CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/53

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2012	9702	53
1	Planning (1	5 marks)		
	Defining the	e problem (3 marks)		
	P λ is the i	ndependent variable or vary λ .		[1]
	P θ is the θ	dependent variable or measure $ heta$ (for each λ).		[1]
	P Light sou	urces to be of similar intensity/brightness.		[1]
	Methods of	data collection (5 marks)		
	M1 Labelled light e.g.	diagram showing observer, light sources with method filter/coloured LED.	of producing n	nonochromatic [1]
	M2 Method	to measure wavelength: record from filter/LED or Ye	oung's slit/diffr	action grating
	method.			[1]
	M3 Use a ru	le to measure the distances.		[1]
	M4 Method	to determine θ , e.g. θ (or sin θ or tan θ) = separation/dist	ance or	
	$\tan(\theta/2) = \frac{\sec^2}{2}$			
	Do not allow	distance protractor methods		[1]
	Do not allow			[']
	M5 Carry ou	t the experiment in a dark room.		[1]
	Method of a	nalysis (2 marks)		
	A Plot a gr	aph of θ against λ . [Allow lg θ against lg λ].		[1]
	A Relation	ship valid if straight line <u>through origin</u> .		[1]
	[If Ig-Ig t	hen straight line with gradient = (+)1 (ignore reference to	y-intercept)]	
	Safety cons	iderations (1 mark)		
	S Lamp be moving l	ecomes hot, therefore do not touch/switch off when no not lamp.	t in use or use	e gloves when
	OR Light ma	y damage eyes, therefore wear dark glasses or do not lo	ook at unproted	ted lamps.
				[']
	Additional d	letail (4 marks)		
	D1/2/3/4 Rel	evant points might include		[4]
	1 Use vertic	cal filament lamps. Allow vertical slits.		
	2 Additional	detail on measuring λ e.g. use of equation for Y	oung's slit/diffr	action grating
	3 Use of ve	rnier calipers to measure the separation of light sources.		
	4 Use large	distances/separations.		
	5 $\theta = \sin \theta$	= tan θ for small angles.		
	6 View with	the same eye.		
	7 Method to	ensure distances are perpendicular or observer equidis	<u>stant f</u> rom pair o	of lamps.
	δ Repeatex	(periment for each λ and average.		
	DO HOL AIIOW	vague computer methous.		

[Total: 15]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	53

2 Analysis, conclusions and evaluation (15 marks)

Part		Mark	Expect	ed Answer		Additional Guidance	
(a)		A1	Gradient = kA^2				
(b)		T1 T2	1.3 or 1.33	1.2	T	1 must be values in 1/ <i>M</i> . Ignore row 2.	
			0.8(0)(0)(0)	0.74	-		
			0.571 or 0.5714	0.54 or 0.55			
			0.444 or 0.4444	0.41 or 0.411 or 0.410			
			0.364 or 0.3636	0.34			
			0.308 or 0.3077	0.29 or 0.30			
		U1	From ± 0.2 or ± 0.03	or \pm 0.15 to \pm 0.02 o		llow more than one significant figure. to not allow \pm 0.1 for row 1.	
(c) (i)		G1	Six points plotted correctly		M E	lust be within half a small square. Penalise 'blobs'. cf allowed from table.	
		U2	All error bars in v^2 plotted correctly		ed M	Must be accurate within half a small square.	
(c)	(ii)	G2 Line of best fit		TI be pl	There must be a balance of points about the line of best fit – examiner judgement. Allow ecf from points plotted incorrectly.		
		G3	Worst accept Steepest or s line that pass error bars.	able straight lir hallowest possil es through <u>all</u> t	ie. Line should be clearly labelled or dashed. Shole pass from top of top error bar to bottom of bot error bar or bottom of top error bar to top of bot error bar. Mark scored only if error bars are plotted.		
(c)	(iii) C1 Gradient of best fit line		TI th sr 0.	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half small square. Do not penalise POT. Should be about 0.9.			
		U3	Uncertainty in gradient		M D	lethod of determining absolute uncertainty. ifference in worst gradient and gradient.	
(d)	(i)	C2 $k = \text{gradient} / A^2$ = gradient / 0.04		S	hould be about 22.		
		C3	N m ⁻¹		A	Allow kg s ⁻²	
(d)	(ii)	U4	Percentage uncertainty in k		$\frac{\Delta}{I}$	$\frac{\Delta m}{m} \times 100 + 2 \times \frac{\Delta A}{A} \times 100 = \frac{\Delta m}{m} \times 100 + 5\%$	

I	Page 4	Mark Sc	Syllabus Paper				
		GCE AS/A LEVEL – Oct	ober/November 2012	9702	53		
(e)	C4	<i>v</i> in the range 0.534 to 0.559 and given to 2 or 3 s.f.	For 2 s.f. 0.53 to 0.56				
	U5	Uncertainty in v					

[Total: 15]

Uncertainties in Question 2

- (c) (iii) Gradient [U3]
 Uncertainty = gradient of line of best fit gradient of worst acceptable line
 Uncertainty = ½ (steepest worst line gradient shallowest worst line gradient)
- (d) (ii) [U4]

Percentage uncertainty = $\frac{\Delta m}{m} \times 100 + 2 \times \frac{\Delta A}{A} \times 100 = \frac{\Delta m}{m} \times 100 + 5\%$ Maximum $k = \frac{\max m}{(\min A)^2}$ Minimum $k = \frac{\min m}{(\max A)^2}$ Percentage uncertainty = $\frac{\Delta k}{k} \times 100 = \frac{1}{2} \frac{(\max k - \min k)}{k} \times 100$

(e) [U5]

Percentage uncertainty = $\frac{\Delta A}{A} \times 100 + \frac{1}{2} \times \frac{\Delta k}{k} \times 100$ Absolute uncertainty = $v \times$ percentage uncertainty/100 Maximum $v = \max A \times \sqrt{\frac{\max k}{0.75}}$ Minimum $v = \min A \times \sqrt{\frac{\min k}{0.75}}$ Absolute uncertainty = $\max v - v$ or $v - \min v$ or $\frac{1}{2}(\max v - \min v)$