## MARK SCHEME for the October/November 2011 question paper

## for the guidance of teachers

## 9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|   | Page         | e 2         | Mark Scheme: Teachers' version S                                                                                                               | yllabus | Paper          |     |
|---|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-----|
|   | ¥            |             | GCE AS/A LEVEL – October/November 2011                                                                                                         | 9702    | 21             |     |
| 1 | <b>(a)</b> d | ens         | sity = mass / volume                                                                                                                           |         | B1             | [1] |
|   |              |             | sity of liquids and solids same order as spacing similar / to abour<br>sity of gases much less as spacing much more                            | t 2×    | B1             |     |
|   |              |             | ensity of gases much lower hence spacing much more                                                                                             |         | B1             | [2] |
|   | (c) (i       | i) (        | density = 68 / [50 × 600 × 900 × 10 <sup>-9</sup> ]<br>= 2520 (allow 2500)kg m <sup>-3</sup>                                                   |         | C1<br>A1       | [2] |
|   | (ii          | i) /        | P = F / A<br>= 68 × 9.81 / [50 × 600 × 10 <sup>-6</sup> ]<br>= 2.2 × 10 <sup>4</sup> Pa                                                        |         | C1<br>C1<br>A1 | [3] |
| 2 |              |             | ue is the product of one of the forces and the distance between the product of one of the forces                                               | forces  | M1<br>A1       | [2] |
|   | (b) (i       | <b>i)</b> t | torque = 8 × 1.5 = 12Nm                                                                                                                        |         | A1             | [1] |
|   | (ii          | •           | there is a resultant torque / sum of the moments is not zero<br>(the rod rotates) and is not in equilibrium                                    |         | M1<br>A1       | [2] |
|   | (c) (i       | ,           | B × 1.2 = 2.4 × 0.45<br>B = 0.9(0) N                                                                                                           |         | C1<br>A1       | [2] |
|   | (ii          | i) /        | A = $2.4 - 0.9 = 1.5$ N / moments calculation                                                                                                  |         | A1             | [1] |
| 3 | (a) (i       | i) ł        | horizontal velocity = $15 \cos 60^\circ = 7.5 \mathrm{m  s^{-1}}$                                                                              |         | A1             | [1] |
|   | (ii          | i) \        | vertical velocity = $15 \sin 60^\circ = 13 \mathrm{m  s^{-1}}$                                                                                 |         | A1             | [1] |
|   | (b) (i       | 5           | $v^2 = u^2 + 2as$<br>s = (13) <sup>2</sup> / (2 × 9.81) = 8.6(1) m<br>using g = 10 then max. 1                                                 |         | A1             | [1] |
|   | (ii          | i) t        | <i>t</i> = 13 / 9.81 = 1.326 s or <i>t</i> = 9.95 / 7.5 = 1.327 s                                                                              |         | A1             | [1] |
|   | (iii         | i) \        | velocity = $6.15 / 1.33$<br>= $4.6 \mathrm{m  s^{-1}}$                                                                                         |         | M1<br>A0       | [1] |
|   | (c) (i       | i) (        | change in momentum = 60 × 10 <sup>-3</sup> [–4.6 – 7.5]<br>= (–)0.73Ns                                                                         |         | C1<br>A1       | [2] |
|   | (ii          | r           | final velocity / kinetic energy is less after the collision or<br>relative speed of separation < relative speed of approach<br>hence inelastic |         | M1<br>A0       | [1] |

|   | Page 3 |                     |                | Mark Scheme: Teachers' version<br>GCE AS/A LEVEL – October/November 2011       |                                                      |                          |                   | Syllabus | Pape                       | er                |     |
|---|--------|---------------------|----------------|--------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|-------------------|----------|----------------------------|-------------------|-----|
|   |        |                     |                | GCE AS                                                                         | 5/A LEVEL                                            | – Uctobe                 | r/Novembe         | er 2011  | 9702                       | 21                |     |
| 4 | (a)    | ene                 | rgy (s         | stored) whe                                                                    | energy (store<br>en mass mo<br>electric fiele        | ved                      |                   |          | avitational poten<br>field | ntial<br>B1<br>B1 | [2] |
|   | (b)    | and                 | force          | ne = force ×<br>e = <i>mg</i><br>r <i>mg</i> × ∆h                              | distance m                                           | oved (in d               | irection of       | force)   |                            | M1<br>A1          | [2] |
|   | (c)    | (i)                 | 0.1 >          | × $mgh = \frac{1}{2}$<br>× $m$ × 9.81<br>15.3 m s <sup>-1</sup>                | <i>mv</i> <sup>2</sup><br>× 120 = 0.5                | × m × v <sup>2</sup>     |                   |          |                            | B1<br>B1<br>A0    | [2] |
|   |        | (ii)                |                | 0.5 <i>m v<sup>2</sup> / t</i><br>t = 110 × 1<br>= 3740 kg                     | $0^3$ / [0.25 ×                                      | 0.5 × (15.3              | 3) <sup>2</sup> ] |          |                            | C1<br>C1<br>A1    | [3] |
| 5 | (a)    | ohm = volt / ampere |                |                                                                                |                                                      |                          | B1                | [1]      |                            |                   |     |
|   | (b)    | $\rho$ = unit       | RA /<br>s: V A | <i>l</i> or unit is s<br>\ <sup>-1</sup> m <sup>2</sup> m <sup>-1</sup>        | $\Omega m = NmC^{-1}A = kgm^2s^{-2}A = kgm^3s^{-3}A$ | $A^{-1} s^{-1} A^{-1} r$ | $m^2 m^{-1}$      |          |                            | C1<br>C1<br>A1    | [3] |
|   | (c)    | (i)                 |                | [3.4 × 1.3<br>4.9 × 10 <sup>-7</sup>                                           | × 10 <sup>-7</sup> ] / 0.9<br>(Ωm)                   |                          |                   |          |                            | C1<br>A1          | [2] |
|   |        | (ii)                |                | = 2.(0) V<br>= 2 × (3.4 /                                                      | 1503.4) = 4                                          | .5 × 10 <sup>−3</sup> \  | /                 |          |                            | A1<br>A1          | [2] |
|   | (      | (iii)               | =              | V <sup>2</sup> / <i>R</i> or <i>F</i><br>(2) <sup>2</sup> / 3.4<br>1.18 (allow | ? = <i>VI <u>and</u> V</i><br>/ 1.2) W               | ' = IR                   |                   |          |                            | C1<br>A1          | [2] |
|   | (d)    | (i)                 | pow            | er in Q is z                                                                   | ero when <i>R</i>                                    | = 0                      |                   |          |                            | B1                | [1] |
|   |        |                     |                |                                                                                |                                                      | _                        |                   |          |                            |                   |     |

(ii) power in Q = 0 / tends to zero as R = infinity B1 [1]

|   | Page          | e <b>4</b>            | Mark Scheme: Teachers' version                                                                               | Syllabus           | Paper              |     |
|---|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----|
|   |               |                       | GCE AS/A LEVEL – October/November 2011                                                                       | 9702               | 21                 |     |
| 6 | <b>(a)</b> ex | xtensio               | n is proportional to force (for small extensions)                                                            |                    | B1                 | [1] |
|   | (b) (i        |                       | t beyond which (the spring) does not return to its origir is removed                                         | nal length when th | ne<br>B1           | [1] |
|   | (ii           | ) grad                | lient of graph = $80 \mathrm{Nm^{-1}}$                                                                       |                    | A1                 | [1] |
|   | (iii          |                       | x done is area under graph / ½ <i>Fx</i> / ½ <i>kx</i> <sup>2</sup><br>5 × 6.4 × 0.08 = 0.256 (allow 0.26) J |                    | C1<br>A1           | [2] |
|   | (c) (i        | ) exte                | nsion = 0.08 + 0.04 = 0.12 m                                                                                 |                    | A1                 | [1] |
|   | (ii           | ) sprir               | ng constant = $6.4 / 0.12 = 53.3 \mathrm{N  m^{-1}}$                                                         |                    | A1                 | [1] |
| 7 |               |                       | th the same number of protons<br>ferent number of neutrons                                                   |                    | B1<br>B1           | [2] |
|   | (b) (i        | mon                   | ss + energy) (taken together) is conserved<br>nentum is conserved<br>point required max. 1                   |                    | (B1)<br>(B1)<br>B1 | [1] |
|   | (ii           | ) a =<br>x =<br>y = 9 |                                                                                                              |                    | B1<br>B1<br>B1     | [3] |
|   |               | roton ni<br>ucleon    |                                                                                                              | B1<br>B1           | [2]                |     |