UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Sec	ction	ı A		
1	(a)	region (of space) where a particle / body experiences a force	B1	[1]
	(b)	similarity: e.g. force $\propto 1 / r^2$ potential $\propto 1 / r$	B1	[1]
		difference: e.g. gravitation force (always) attractive electric force attractive or repulsive	B1 B1	[2]
	(c)	either ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1 m_2 G$ = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.67 \times 10^{-11}$ = 1.2×10^{36} or $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	C1 C1 A1	[3]
2	(a)	amount of substance containing same number of particles as in 0.012kg of carbon-12	M1 A1	[2]
	(b)	pV = nRT amount = $(2.3 \times 10^5 \times 3.1 \times 10^{-3}) / (8.31 \times 290)$ + $(2.3 \times 10^5 \times 4.6 \times 10^{-3}) / (8.31 \times 303)$ = $0.296 + 0.420$ = 0.716 mol (give full credit for starting equation $pV = NkT$ and $N = nN_A$)	C1 C1 C1 A1	[4]
3	(a)	charges on plates are equal and opposite so no resultant charge energy stored because there is charge separation	M1 A1 B1	[3]
	(b)	(i) capacitance = Q / V = $(18 \times 10^{-3}) / 10$ = $1800 \mu F$	C1 A1	[2]
		(ii) use of area under graph or energy = $\frac{1}{2}CV^2$ energy = $2.5 \times 15.7 \times 10^{-3}$ or energy = $\frac{1}{2} \times 1800 \times 10^{-6} \times (10^2 - 7.5^2)$ = 39 mJ	C1 A1	[2]
	(c)	combined capacitance of Y & Z = $20\mu\text{F}$ or total capacitance = $6.67\mu\text{F}$ p.d. across capacitor X = 8V or p.d. across combination = 12V charge = $10\times10^{-6}\times8$ or $6.67\times10^{-6}\times12$ = $80\mu\text{C}$	C1 C1 A1	[3]

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2011

Syllabus

9702

Paper

42

Page 2

	Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper	
	4 (a) +∆ <i>U</i> : inci + <i>q</i> : thern			GCE AS/A LEVEL – May/June 2011	9702	42	
4			thern	rease in internal energy nal energy / heat supplied to the system c done on the system		B1 B1 B1	[3]
	(b)	(i)	per i	rmal) energy required to change the state of a substanunit mass out any change of temperature	ce	M1 A1 A1	[3]
		(ii)	grea grea	In evaporating atter change in separation of atoms/molecules atter change in volume atter change in volume with ΔU and W		M1 M1 A1	[3]
5	(a)	(i)	•	uced) e.m.f. proportional to of change of (magnetic) flux (linkage) / rate of flux cutt	ing	M1 A1	[2]
		(ii)	2. sp	noving magnet causes change of flux linkage beed of magnet varies so varying rate of change of flux nagnet changes direction of motion (so current changes		B1 B1 B1	[1] [1] [1]
	(b)	•		0.75s cy = 1.33 Hz		C1 A1	[2]
	(c)	gra	•	mooth correctly shaped curve with peak at f_0 never zero		M1 A1	[2]
	(d)	(i)	reso	onance		B1	[1]
		(ii)	e.g.	quartz crystal for timing / production of ultrasound		A1	[1]
6	(a)	(i)		= 380 uency = 60 Hz		C1 A1	[2]
		(ii)		$\begin{array}{l} \times \sqrt{2} = I_0 \\ = 9.9 / \sqrt{2} \end{array}$		C1	
			1 RMS	$= 7.0 \mathrm{A}$		A1	[2]
	(b)		ver = = 400	I^2R / 9.9^2		C1	
			4.1			A1	[2]

	i ago i		COT ACIA I TVTI Maniforma 2044	0700	42	
			GCE AS/A LEVEL – May/June 2011	9702	42	
7	(a)	waveleng that is m	gth of wave associated with a particle oving		M1 A1	[2]
	(b)		rgy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J		M1	
		enei mon	$f(y) = p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ nentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = $1.6 \times 10^{-23} \text{Ns}$		M1 A0	[2]
		(ii) $\lambda = \lambda$			C1	
		wav	elength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = 4.1×10^{-11} m		A1	[2]
	(c)	electron incident fluoresce pattern o	or description showing: beam in a vacuum on thin metal target / carbon film ent screen of concentric rings observed imilar to diffraction pattern observed with visible light		B1 B1 B1 M1 A1	[5]
8	(a)	energy ro	equired to separate nucleons in a <u>nucleus</u>		M1 A1	[2]
	(b)	$E = mc^2$ = 1.66 = 1.49	$5 \times 10^{-27} \times (3.0 \times 10^8)^2$ $5 \times 10^{-10} \text{ J}$ $5 \times 10^{-10} \text{ J}$ $5 \times 10^{-10} \text{ J}$		C1 M1 M1 A0	[3]
	(c)	.,	= $2.0141u - (1.0073 + 1.0087)u$ = $-1.9 \times 10^{-3}u$ ing energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV		C1 A1	[2]
		(ii) ∆ <i>m</i>	= (57 × 1.0087u) + (40 × 1.0073u) – 97.0980u		C1	
		` ,	= (-)0.69 u ing energy per nucleon = (0.69 × 930) / 97 = 6.61 MeV		C1 A1	[3]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

Sec	ction B		
9	(a) thin / fine metal wire lay-out shown as a grid encased in plastic	B1 B1 B1	[3]
	(b) (i) gain (of amplifier)	B1	[1]
	(ii) for $V_{OUT} = 0$, then $V^+ = V^-$ or $V_1 = V_2$ $V_1 = (1000/1125) \times 4.5$ $V_1 = 4.0 \text{ V}$	C1 C1 A1	[3]
	(iii) $V_2 = (1000 / 1128) \times 4.5$ = 3.99 V $V_{OUT} = 12 \times (3.99 - 4.00)$	C1	
	= (-) 0.12V	A1	[2]
10	strong / large (uniform) magnetic field nuclei precess / rotate about field direction radio frequency pulse (1)	B1 B1	
	at Larmor frequency (1) causes resonance / nuclei absorb energy on relaxation / de-excitation, nuclei emit r.f. pulse	B1 B1	
	pulse detected and processed (1) non-uniform field superposed on uniform field allows position of resonating nuclei to be determined	B1 B1	
	allows for location of detection to be changed (1) (six points, 1 each plus any two extra – max 8)	51	[8]
11	(a) e.g. unreliable communication because ion layers vary in height / density e.g. cannot carry all information required bandwidth too narrow (A1) e.g. coverage limited reception poor in hilly areas (any two sensible suggestions, M1 & A1 for each, max 4)		[4]
	(b) signal must be amplified (greatly) before transmission back to Earth uplink signal would be swamped by downlink signal	B1 B1	[2]

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2011

Page 5

Syllabus

9702

Paper

42

Page 6		6	Mark Scheme: Teachers' version	Syllabus	Pap	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	42		
12 ((a) (i)	24 =	/ dB = $10 \lg(P_1 / P_2)$ $10 \lg(P_1 / \{5.6 \times 10^{-19}\})$ $1.4 \times 10^{-16} \text{W}$		C1 C1 A1	[3]	
	(ii)	atter 1.9 = <i>L</i> = 2	nuation per unit length = $1 / L \times 10 \lg(P_1 / P_2)$ = $1 / L \times 10 \lg({3.5 \times 10^{-3}}/{1.4 \times 10^{-16}})$ 1 km		C1 C1 A1	[3]	
		<i>or</i> atter	nuation = 10 lg({3.5 × 10 ⁻³ }/{5.6 × 10 ⁻¹⁹ }) = 158 dB	(C1)			
			nuation along fibre = (158 – 24) (158 – 24) / 1.9 = 71 km	(C1) (A1)			
((b) less	s atte	nuation (per unit length) / longer uninterrupted	length of fibre	B1	[1]	