MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2			Paper	,	
		GCE AS/A LEVEL – May/June 2011		21	21	
1	(a) (i)	metre rule / tape (not 'rule')		B1	[1]	
	(ii)	micrometer (screw gauge) / digital caliper		B1	[1]	
	(iii)	ammeter and voltmeter / ohmmeter / multimete	er on 'ohm' setting	B1	[1]	
	(b) (i)	resistivity = RA / L = $[7.5 \times \pi \times (0.38 \times 10^{-3})^2 / 4] / 1.75$ = $4.86 \times 10^{-7} \Omega$ m		C1 M1 A0	[2]	
	(ii)	(uncertainty in $R =$) $[0.2 / 7.5] \times 100 = 2.7$ and (uncertainty in $L =$) $[3 / 1750] \times 100 = 0.1$ (uncertainty in $A =$) $2 \times (0.01 / 0.38) \times 100$ total = 8.13%	7%	C1 C1 C1		
		uncertainty = 0.395×10^{-7} (Ω m) (<i>missing 2 factor in uncertainty in A, then allow</i>	r max 3/4)	A1	[4]	
	(c) res	stivity = (4.9 × $10^{-7} \pm 0.4 \times 10^{-7}$) Ω m		A1	[1]	
2	(a) work done is the force × the distance moved / displacement in the direction of th force			he		
	or wo	k is done when a force moves in the direction o	f the force	B1	[1]	
	. ,	nponent of weight = 850 × 9.81 × sin 7.5° = 1090 N e of incorrect trigonometric function, 0/2)		C1 A1	[2]	
	(c) (i)	$\Sigma F = 4600 - 1090 = (3510)$ deceleration = 3510 / 850 = 4.1 ms ⁻²		M1 A1 A0	[2]	
	(ii)	$v^2 = u^2 + 2as$ $0 = 25^2 + 2 \times -4.1 \times s$ s = 625 / 8.2		C1		
		= 76 m (allow full credit for calculation of time (6.05 s)	& then s)	A1	[2]	
	(iii)	1. kinetic energy = $\frac{1}{2}mv^2$		C1		
		= $0.5 \times 850 \times 25^2$ = 2.7×10^5 J		A1	[2]	
		2. work done = 4600×75.7 = 3.5×10^5 J		A1	[1]	
	(iv)	difference is the loss in potential energy (owthe)	B1	[1]	

© University of Cambridge International Examinations 2011

	Page 3		labus Pape	er
		GCE AS/A LEVEL – May/June 2011 9	702 21	
3		nt where the weight of an object / gravitational force y be considered to act	M1 A1	[2]
	(b) pro	duct of the force and the <u>perpendicular</u> distance (to the pivot)	B1	[1]
	(c) (i)	1. sum / net / resultant force is zero	B1	
		 net / resultant moment is zero sum of clockwise moments = sum of anticlockwise moments 	B1	[2]
	(ii)	$W \times 0.2 = 80 \times 0.5 + 70 \times 1.3$ = 40 + 91 W = 655 N (allow 2/3 for one error in distance but 0/3 if two errors)	C1 C1 A1	[3]
	(iii)	move pivot to left gives greater clockwise moment / smaller anticlockwise moment	(M1)	
		or move W to right gives smaller anticlockwise moment	(A1) (M1) (A1)	
4	(a) (i)	stress is force / area	B1	[1]
	(ii)	<i>strain</i> is extension / <u>original</u> length	B1	[1]
	(b) (i)	$E = [F / A] \div [e / l]$ $e = (25 \times 1.7) / (5.74 \times 10^{-8} \times 1.6 \times 10^{11})$ $e = 4.6 \times 10^{-3} \text{ m}$	C1 C1 A1	[3]
	(ii)	A becomes A/2 or stress is doubled $e \propto l/A$ or substitution into full formula total extension increase is 4e	B1 B1 A1	[3]
5	(a) (i)	<i>I</i> = 12 / (6 + 12) minimum current = 0.67 A	C1 A1	[2]
	(ii)	correct start and finish points correct shape for curve with decreasing gradient	M1 A1	[2]
		ximum current = 2.0 A imum current = 0	A1 A1	[2]
	(c) (i)	smooth curve starting at (0,0) with decreasing gradient end section not horizontal	M1 A1	[2]
	(ii)	full range of current / p.d. possible <i>or</i> currents / p.d. down to zero <i>or</i> brightness ranging from off to full brightness	B1	[1]

© University of Cambridge International Examinations 2011

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	21	
6	(a)	large mole no ir elas time	two of: e number of molecules / atoms / particles cules in random motion termolecular forces ic collisions of collisions much less than time between collisions ne of molecules much less than volume of containing	vessel	B1 + B1	[2]
	(b)	<u>char</u> mole pres	cules collide with the walls <u>ge in momentum</u> of molecules implies force (on mole cules exert equal and opposite force on wall sure is averaging effect of many collisions <i>three statements, 1 each</i>)	cules)	В3	[3]
7	(a)		n waves overlap / meet, (resultant) displacement is tl acements	ne sum of the individ	dual B1	[1]
	(b)	.,	two (ball-type) dippers connected to the same vibrating source /motor or one wave source described with two slits		(M1) (A1) (M1) (A1)	[2]
		• •	amp with viewing screen on opposite side of tank means of freezing picture e.g. strobe		B1 B1	[2]
	(c)	(i)	wo correct lines labelled X		B1	[1]
		(ii)	correct line labelled N		B1	[1]

© University of Cambridge International Examinations 2011