UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	42

Section A

1	(a) for	ce per unit mass	(ratio idea e	essential)		B1	[1]
	(b) gra		ature $g_{ m s})$ & at least one	other correct poi	nt	M1 A1	[2]
	(c) (i)	or any other	field found by sul sensible comme nt where it is zero	otraction of the fient		M1 A1 A0	[2]
	(ii)	$GM_E / x^2 = GM_M / (6.0 \times 10^{24}) / (7.4 \times 1$	$(D-x)^2 1 \times 10^{22}) = x^2 / (60)$	$(R_E - x)^2$		C1 C1 A1	[3]
	(iii) graph: $g = 0$ at least $\frac{2}{3}$ distance to Moon $g_{\rm E}$ and $g_{\rm M}$ in opposite directions correct curvature (by eye) and $g_{\rm E} > g_{\rm M}$ at surface					B1 M1 A1	[3]
2	(a) (i) no forces (of attraction or repulsion) between atoms / molecules / particles						[1]
	(ii) sum of kinetic and potential energy of atoms / molecules due to random motion						[2]
	(iii) (random) kinetic energy increases with temperature no potential energy						
		-	emperature increa	ases internal ene	rgy)	A1	[2]
	(b) (i)	zero				A1	[1]
	(ii)	work done = $p\Delta$	V × 10 ⁵ × 6 × 10 ⁻⁴			C1	
		= $4.0 \times 10^5 \times 6 \times 10^{-4}$ = 240 J (ignore any sign)					
	(iii)]	
		change	work done / J	heating / J	increase in internal energy / J		

change	work done / J	heating / J	increase in internal energy / J
$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \\ R \rightarrow P \end{array}$	240	0	240
	0	320	320
	–560	0	–560

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

	· ~;	, 			O y nabao	. upo.	
				GCE AS/A LEVEL – October/November 2010	9702	42	
2	(0)	/:\	rocono	nno		D1	[4]
3	(a)	(i)	resona	ince		B1	[1]
		(ii)	amplitu	ude 16 mm and frequency 4.6 Hz		A1	[1]
		` ,		<u> </u>			
			,				
	(b)	(i)	a = (-	$\omega^2 x$ and $\omega = 2\pi f$		C1	
				$\tau^2 \times 4.6^2 \times 16 \times 10^{-3}$ 3.4 m s ⁻²		C1	[2]
			= 13	5.4 ms		A1	[3]
		(ii)	F = m	a		C1	
		` '	= 50) × 10 ⁻³ × 13.4			
			= 2.	0 N		A1	[2]
	(c)	line	alwavs	'below' given line and never zero		M1	
			•	I.6 Hz (or slightly less) and flatter		A1	[2]
		•		,			
4	(0)	ob o	raa / na	tantial (difference) (ratio must be along)		D4	[4]
4	(a)	cna	rge / po	tential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = Q	$/4\pi\varepsilon_0 r$		B1	[1]
		/::\	0 - 0	///		144	
		(ii)	$C = Q$, so $C \sim$	$V = 4\pi \varepsilon_0 r$ and $4\pi \varepsilon_0$ is constant		M1 A0	[1]
			30 0	1		Au	ניו
	(c)	(i)	r = C /			C1	
				3×10^{-12}) / $(4\pi \times 8.85 \times 10^{-12})$		C1	
			= 6.1 ×	10 ⁻² m		A1	[3]
		(ii)	Q = CV	$/ = 6.8 \times 10^{-12} \times 220$			
		` '	-	$1.5 \times 10^{-9} \mathrm{C}$		A1	[1]
				12.			
	(d)	(i)	V = Q/C	$C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[4]
			– 63 V			AI	[1]
		(ii)	either	energy = $\frac{1}{2}CV^2$		C1	
		-		$\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	2	C1	
				$= 1.65 \times 10^{-7} - 6.2 \times 10^{-8}$			
				$= 1.03 \times 10^{-7} \text{ J}$		A1	[3]
			or	energy = $\frac{1}{2}QV$ $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$		(C1)	
				$\Delta E = \frac{9}{2} \times 1.5 \times 10^{-1} \times 220 - \frac{9}{2} \times 1.5 \times 10^{-1} \times 83$ $= 1.03 \times 10^{-7} \text{ J}$		(C1) (A1)	
				- 1.00 " TO U		(171)	

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Page 4					Paper		
				GCE AS/A LEVEL – October/November 2010 970		42		
5	(a)	i) field into		(the plane of) the paper		B1	[1]	
	(b)		? / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv $0 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}$) / (1.6) × $10^{-19} \times 6.4 \times 10^{454}$ T	⁻²)	B1 C1 B1 A0	[3]	
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]	
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$		C1		
				B = 0.499 T		A1	[2]	
6	(a)		_	prevent flux losses / improve flux linkage		B1	[1]	
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]	
	(b)	(i)		value of the direct current producing same (mean) pov resistor	wer / heating	M1 A1	[2]	
		(ii)	•	er in primary = power in secondary $_{\rm o}$ = $V_{\rm S}I_{\rm S}$		M1 A1	[2]	
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]	
		(ii)	e.g.	photoelectric effect		B1	[1]	
	(b)	(i)				A1	[1]	
		(ii)	$\lambda = I$	nge in energy = 4.57×10^{-19} J hc / E $63 \times 10^{-34} \times 3.0 \times 10^{8}$) / (4.57×10^{-19})		C1		
				$4 \times 10^{-7} \mathrm{m}$		A1	[2]	
8	(a)	-	_	of a heavy nucleus (not atom/nuclide) (lighter) nuclei of approximately same mass		M1 A1	[2]	
	(b)	¹ ₀ n ⁴ ₂ He ⁷ ₃ Li	Э	(allow 4_2lpha)		M2 A1	[3]	
	(c)	rang lose	ge of kine	particles have kinetic energy particles in the control rods is short / particles stopped tic energy in rods nergy of particles converted to thermal energy	l in rods /	B1 B1 B1	[3]	

			Section B		
9	(a)	(i)	non-inverting (amplifier)	B1	[1]
		(ii)	$(G =) 1 + R_2 / R_1$	B1	[1]
	(b)	(i)	gain = 1 + 100 / 820 output = 17 mV	C1 A1	[2]
		(ii)	$9V$ $(R_2 / R_1 \text{ scores 0 in (a)(ii)})$ but possible 1 mark in each of (b)(i) and (b)(ii) $(1 + R_1 / R_2)$ scores 0 in (a)(ii), no mark in (b)(i), possible 1 mark in (b)(ii) $(1 - R_2 / R_1)$ or R_1 / R_2 scores 0 in (a)(ii), (b)(i) and (b)(ii))	A1	[1]
10	(a)	(i)	density × speed of wave (in the medium)	B1	[1]
		(ii)	$\rho = (7.0 \times 10^6) / 4100$ = 1700 kg m ⁻³	A1	[1]
	(b)	(i)	$I = I_{T} + I_{R}$	B1	[1]
		(ii)	1. $\alpha = (0.1 \times 10^6)^2 / (3.1 \times 10^6)^2$ = 0.001	C1 A1	[2]
			2. α ≈ 1	A1	[1]
	(c)	eith or	very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body	M1 M1 A1 (M1) (M1) (A1)	[3]
11	(a)	(i)	unwanted random power / signal / energy	B1	[1]
		(ii)	loss of (signal) power / energy	B1	[1]
	(b)	(i)	either signal-to-noise ratio at mic. = $10 \lg (P_2 / P_1)$ = $10 \lg (\{2.9 \times 10^{-6}\} / \{3.4 \times 10^{-9}\})$ = $29 dB$	C1 A1	
			maximum length = (29 – 24) / 12 = 0.42 km = 420 m	C1 A1	[4]
			or signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg $(P / {3.4 \times 10^{-9}})$	(C1)	
			$P = 8.54 \times 10^{-7} \text{ W}$ power loss in cables = $10 \lg(\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-7}\})$ = 5.3 dB	(A1) (C1)	
			length = 5.3 / 12 km = 440 m	(A1)	

Mark Scheme: Teachers' version

GCE AS/A LEVEL - October/November 2010

Syllabus

9702

Paper

42

Page 5

Pa	age 6	Ma	rk Scheme: Teachers' version	Syllabus	Paper	٢
		GCE AS	/A LEVEL – October/November 2010	9702	42	
		d to the m	nicrophone ers scores no mark)		M1 A1	[2]
12 (a)	(a) (carrier wave) transmitted from Earth to sa satellite receives greatly attenuated signal signal amplified and transmitted back to E at a different (carrier) frequency different frequencies prevent swamping or e.g. of frequencies used (6/4 GHz, 14/11 (two B1 marks plus any two other for additional satelline in the satelline in the satelline is a satelline in the satelline in the satelline is a satelline in the satelline in the satelline is a satelline in the satelline in the satelline is a satelline in the satelline in the satelline is a satelline in the satelline in the satelline is a satelline in the satelline		atly attenuated signal transmitted <u>back to Earth</u>) frequency prevent swamping of uplink signal sed (6/4GHz, 14/11GHz, 30/20GHz)	(1) (1) (1) (1)	B1 B1 B2	[4]
(b)	advantage:	e.g.	much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)	
	disadvanta	ge: e.g.	either must be trackedor limited use in any one orbitmore satellites required for continuous of	pperation	M1 A1	[4]