MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		age 2 Mark Scheme: Teachers' version S GCE AS/A LEVEL – October/November 2010				Syllabus	Pap		
			GCE AS/	A LEVEL – Octo	ber/November 2	2010	9702	41		
	Section A									
1	(a) forc) force per unit mass (<i>ratio idea essential</i>)						B	[1]	
	(b) gra	graph: correct curvature from (R ,1.0 g_s) & at least one other correct point								
	(c) (i)	(i) fields of Earth and Moon are in opposite directions								
		<i>either</i> resultant field found by subtraction of the field strength <i>or</i> any other sensible comment so there is a point where it is zero (<i>allow</i> $F_E = -F_M$ <i>for</i> 2 <i>marks</i>)							l) [2]	
	(ii)	(ii) $GM_{\rm E} / x^2 = GM_{\rm M} / (D - x)^2$ (6.0 × 10 ²⁴) / (7.4 × 10 ²²) = x^2 / (60 $R_{\rm E} - x$) ² $x = 54 R_{\rm E}$								
	(iii)	grapl	g_{E} and g_{N}	east ⅔ distance to ₁ in opposite direo urvature (by eye)	ctions	urface		B′ M A′	1	
2	(a) (i)	no fo	rces (of attra	action or repulsio	n) between atom	ns / mole	cules / particle	s B′	I [1]	
	(ii)	 sum of kinetic and potential energy of atoms / molecules due to random motion 							1 I [2]	
	(iii)	(iii) (random) kinetic energy increases with temperature							1	
		no potential energy (so increase in temperature increases internal energy)						A	I [2]	
	(b) (i)	(b) (i) zero						A	I [1]	
	(ii)	work	done = $p\Delta$					C	1	
		$= 4.0 \times 10^{5} \times 6 \times 10^{-4}$ = 240 J (ignore any sign)							I [2]	
	(iii)	(iii)								
	~ >		change	work done / J	heating / J		se in internal nergy / J			
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

Β3 [3]

© UCLES 2010

www.XtremePapers.net

Page 3				Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	41	
3	(a)	(i)	resor	nance		B1	[1]
		(ii)	ampl	itude 16mm <u>and</u> frequency 4.6Hz		A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x \text{ and } \omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $13.4 \mathrm{m s^{-2}}$		C1 C1 A1	[3]
		(ii)	F =	ma 50 × 10 ^{−3} × 13.4		C1	
				2.0N		A1	[2]
	(c)) line always 'below' given line and never zero peak is at 4.6 Hz (or slightly less) and flatter					[2]
4	(a)	cha	rge / p	ootential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = ($Q / 4\pi \varepsilon_0 r$		B1	[1]
		(ii)	C = (so C	$Q / V = 4\pi \epsilon_0 r$ and $4\pi \epsilon_0$ is constant ~ r		M1 A0	[1]
	(c)	(i)	r = (6	/ $4\pi\epsilon_0 r$ 5.8×10^{-12}) / ($4\pi \times 8.85 \times 10^{-12}$) × 10^{-2} m		C1 C1 A1	[3]
		(ii)		$CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁻⁹ C		A1	[1]
	(d)	(i)	V = 0 = 83	$Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1]
		(ii)	eithe	$\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83$	2	C1 C1	
			or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-8}$ = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]

© UCLES 2010

www.XtremePapers.net

Pa		age 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	41	
5	(a)	field into		d into (the plane of) the paper		B1	[1]
	(b)	forc mv B	² / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv $0 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}) / (1.6) \times 10^{-19} \times 6.4 \times 10^{-19}$ 454 T	-2)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$		C1	
				$B = 0.499 \mathrm{T}$		A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
		(ii)	•	er in primary = power in secondary $P = V_S I_S$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)	6			A1	[1]
		(ii)	λ = / = (6.	nge in energy = 4.57×10^{-19} J hc / E $.63 \times 10^{-34} \times 3.0 \times 10^{8}$) / (4.57×10^{-19}) 4×10^{-7} m		C1 A1	[2]
8	(a)	splitting of a heavy nucleus (<i>not atom/nuclide</i>) into two (lighter) nuclei of <u>approximately same mass</u>			M1 A1	[2]	
	(b)	¹ 0 2 2 7 3 10 3		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)		emitted particles have kinetic energy		in rode /	B1	
		range of particles in the control rods is short / particles stopped in rods / lose kinetic energy in rods kinetic energy of particles converted to thermal energy				B1 B1	[3]

© UCLES 2010

www.XtremePapers.net

	Page 5		e 5Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – October/November 20109702		Paper 41				
	Section B								
9	(a)	(i)	non-i	non-inverting (amplifier)					
		(ii)	(G =)	B1	[1]				
	(b)	(i)		= 1 + 100 / 820 ut = 17 mV		C1 A1	[2]		
		(ii)	(1 + 1	V R ₂ / R ₁ scores 0 in (a)(ii) but possible 1 mark in each of (b)(i) and (b)(ii) I + R ₁ / R ₂) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 mark in (b)(ii) I – R ₂ / R ₁) or R ₁ / R ₂ scores 0 in (a)(ii), (b)(i) and (b)(ii))					
10	(a)	(i)	dens	ity × <u>speed of wave</u> (in the medium)		B1	[1]		
		(ii)		A1	[1]				
	(b)	(i)	$I = I_1$	$I + I_{R}$		B1	[1]		
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]		
			2. α ?	≈ 1		A1	[1]		
	(c)	eith or	(V r V	very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body	,	M1 M1 (M1) (M1) (A1)	[3]		
11	(a)	(i)	unwa	anted random power / signal / energy		B1	[1]		
		(ii)	loss	of (signal) power / energy		B1	[1]		
	(b)	(i)	eithe	r signal-to-noise ratio at mic. = $10 \lg (P_2 / P_1)$ = $10 \lg (\{2.9 \times 10^{-6}\} / \{$ = $29 dB$ maximum length = $(29 - 24) / 12$ = $0.42 \text{ km} = 420 \text{ m}$	3.4 × 10 ^{−9} })	C1 A1 C1	[4]		
			or	= 0.42 km = 420 m signal-to-noise ratio at receiver = 10 lg (P_2 / P_1)		A1 (C1)	[4]		
			at receiver, 24 = 10 lg($P / \{3.4 \times 10^{-9}\}$) $P = 8.54 \times 10^{-7}$ W			(A1)			
		power loss in cables = $10 \log(\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-7}\})$ = 5.3 dB							
				length = 5.3 / 12 km = 440 m		(A1)			
				© UCLES 2010					

www.XtremePapers.net

Pa	age 6	Ма	rk Scheme: Teachers' version	Syllabus	Paper	,
		GCE AS	A LEVEL – October/November 2010	9702	41	
	couple	n amplifier ed to the m ater amplifi	icrophone ers scores no mark)		M1 A1	[2]
12 (a)	satellite re signal amp at a differe different fr e.g. of free	ceives great plified and ent (carrier) equencies quencies us	hitted from Earth to satellite atly attenuated signal transmitted <u>back to Earth</u> o frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz) any two other for additional physics)	(1) (1) (1) (1)	B1 B1 B2	[4]
(b)	advantage disadvanta	e.g.	much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network <i>either</i> must be tracked or limited use in any one orbit		M1 A1 (M1) (A1) M1	
			more satellites required for continuous of	peration	A1	[4]

© UCLES 2010 www.XtremePapers.net