UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	ion Syllabus		Paper			
		GCE A LEVEL – October/November 2010	9702	23				
1	(a) allow 0.	05 mm → 0.15 mm		B1	[1]			
	(b) allow 0.	25s → 0.5s		B1	[1]			
	(c) allow 8	$N \rightarrow 12 N$		B1	[1]			
	ignore r							
2	crystalline:	long range order / orderly pattern	ce (1)	B1 B1				
	amorphous:	some cross-linking between chains / tangled chains disordered arrangement of molecules / atoms / particle	(1) es	B1				
	(three 'B' ma	any ordering is short-range arks plus any other 2 marks)	(1)	B2	[5]			
3	adjust c.r.o. measure ler frequency =	crophone / (terminals of) loudspeaker to Y-plates of c.r.c to produce steady wave of 1 (or 2) cycles / wavelength agth of cycle / wavelength λ and note time-base $b = 1 / \lambda b$ s measured as s cm ⁻¹ , unless otherwise stated)		B1 B1 M1 A1	[4]			
	(if statement is 'measure T , $f = 1/T$ ' then last two marks are lost)							
4	(a) accepta	able straight line drawn (touching every point)		B1	[1]			
	` '	ance fallen is not <i>d</i> distance fallen plus the diameter of the ball		C1 A1	[2]			
	('d is not measured to the bottom of the ball' scores 2/2)							
		meter: allow 1.5 ± 0.5 cm (accept one SF) ecf from (a)		A1	[1]			
	gra	dient = 4.76, \pm 0.1 with evidence that origin has not been dient = g / 2 \cdot 9.5 m s ⁻²	en used	C1 C1 A1	[3]			

Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A LEVEL – October/November 2010 9702		9702	23	
5	(a) (i)	Fig. 5	.2		B1	[1]
	(ii)	Fig. 5	.3		B1	[1]
	(b) kine	etic energy increases from zero then decreases to zero		B1	[1]	
	(c) (i)	(i) $\Delta E_{\rm P} = mg\Delta h / mgh$		4	C1	
			= $94 \times 10^{-3} \times 9.8 \times 2.6 \times 10^{-2}$ using $g = 10$ then -1 = 0.024 J		A1	[2]
	(ii)	either	$0.024 = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k \times (2.6 \times 10^{-2})^{2} \text{ or } \frac{1}{2} k d^{2} = \frac{1}{2} k d^{2} + $			
			= 1.8 cm = 1.8 cm		A1	[3]
6		when two (or more) waves meet (at a point) (resultant) displacement is (vector) sum of individual displacements		B1 B1	[2]	
	(b) (i)		a / D (if no formula given and substitution is incorred $10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$	ct then 0/3)	C1 C1 A1	[3]
	(ii)	1. 180	0° (allow π if rad stated)		A1	[1]
		2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity \sim amplitude ² allow $I \sim a^2$		C1 C1		
			io = $3.4^2 / 0.6^2$		A1	[3]
7	(a) (i)	•	reasonable curve upwards between plates straight and at a tangent to the curve beyond the pla	tes	B1 B1	[2]
	(ii)	1. (F =	=) <i>E.g</i>		B1	[1]
		2. (<i>t</i> =) L/v		B1	[1]
	(b) (i)	(i) total momentum of a system remains constant or total more system before a collision equals total momentum after coll provided no external force acts on the system (do not accept 'conserved' but otherwise correct statements)		ision	M1 A1	[2]
	(ii)	(∆ <i>p</i> =)	EqL / v allow ecf from (a)(ii)		B1	[1]
	(iii)	either or	charged particle is not an isolated system so law does not apply system is particle and 'plates' equal and opposite Δp on plates / so law applies		M1 A1 (M1) (A1)	[2]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE A LEVEL	_ – October/November 2010	9702	23	
8	(a) (i)	eithe	$er P = V^2 / R$	or $I = 1200 / 230$ or 5.22 $R = (230 \times 230) / 1200$		C1	
		R=	230 ² / 1200	or $R = 230 / 5.22$		M1	
		= 44		= 44.1 Ω		A0	[2]
	(ii)	R =	pL/A	2.2.		C1	
			$(1.7 \times 10^{-9} \times 9.2 \times 2)$ 0.492 Ω	2) / $(\pi \times \{0.45 \times 10^{-3}\}^2)$		M1 A0	[2]
		_	0.49232			Au	[4]
	(b) current = 230 /44.6					C1	
	pov		= (230 /44.6) ² × 44. ² = 1170 W	1		C1 A1	[2]
	(all			based on potential divider)		AI	[3]
	(c) e.g. less power dissipated in the heater / smaller p.d. across heater /				eater /		
	more power loss in cable / current lower cable becomes heated / melts				B1 B1	[2]	
				estions, 1 each, max 2)		D1	[4]
9	(a) <u>nucleus</u> emits α -particles or β -particles and/or γ -radiation				B1		
	to form a different / more stable nucleus					B1	[2]
	(b) (i)	fluct	uations in count rate	e (not 'count rate is not constant')		B1	[1]
	() ()			,		D.4	
	(ii)	no e	ffect			B1	[1]
	(iii)			,	B1		
		eithe or	lpha-particles stop $lpha$ -particles are	ped within source (and gain electr helium <u>nuclei</u>	ons)	B1	[2]

allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'

© UCLES 2010