UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9702	43

Section A

1		rk done moving <u>unit</u> mass m infinity to the point	M1 A1	[2]
	(b) (i)	at R , $\phi = 6.3 \times 10^7 \text{ J kg}^{-1} \text{ (allow } \pm 0.1 \times 10^7 \text{)}$ $\phi = GM / R$ $6.3 \times 10^7 = (6.67 \times 10^{-11} \times M) / (6.4 \times 10^6)$	B1 C1	
		$M = 6.0 \times 10^{24}$ kg (allow $5.95 \rightarrow 6.14$) Maximum of 2/3 for any value chosen for ϕ not at R	A1	[3]
	(ii)	change in potential = 2.1×10^7 J kg ⁻¹ (allow $\pm 0.1 \times 10^7$) loss in potential energy = gain in kinetic energy $\frac{1}{2} mv^2 = \phi$ m or $\frac{1}{2} mv^2 = GM / 3R$ $\frac{1}{2} v^2 = 2.1 \times 10^7$	C1 B1 C1	
		$v = 6.5 \times 10^3 \text{ m s}^{-1}$	A1	[4]
	(iii)	e.g. speed / velocity / acceleration would be greater deviates / bends from straight path (any sensible ideas, 1 each, max 2)	B1 B1	[2]
2	(a) (i)	reduction in energy (of the oscillations) reduction in amplitude / energy of oscillations due to force (always) opposing motion / resistive forces any two of the above, max 2	(B1) (B1) (B1)	[2]
	(ii)	amplitude is decreasing (very) gradually / oscillations would continue (for a long time) /many oscillations light damping	M1 A1	[2]
	(b) (i)	frequency = $1/0.3$ = 3.3 Hz allow points taken from time axis giving $f = 3.45 \text{ Hz}$	A1	[1]
	(ii)	energy = $\frac{1}{2} mv^2$ and $v = \omega a$ = $\frac{1}{2} \times 0.065 \times (2\pi/0.3)^2 \times (1.5 \times 10^{-2})^2$ = 3.2 mJ	C1 M1 A0	[2]
	` '	plitude reduces exponentially / does not decrease linearly will be not be 0.7 cm	M1 A1	[2]

	Page 3			Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9702	Paper 43	
3	(a)	(i)	1 de	g C corresponds to (3840 – 190) / 100 Ω	3702	C1	
Ū	(α)	(1)	for re	esistance 2300 Ω , temperature is $100 \times (2300 - 3840)$ perature is $42 ^{\circ}\text{C}$	/ (190 – 3840)	A1	[2]
		(ii)	ther	er $286 \text{ K} = 13 ^{\circ}\text{C}$ or $42 ^{\circ}\text{C} = 315 \text{ K}$ modynamic scale does not depend on the property of a hange in resistance (of thermistor) with temperature is		B1 M1 A1	[3]
	(b)	hea	ıt gair	ned by ice in melting = $0.012 \times 3.3 \times 10^5$ J = 3960 J		C1	
		396 $\theta = 0$	60 + (0 : 16°0 swer	by water = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ $0.012 \times 4.2 \times 10^3 \times \theta$ = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$		C1 C1 A1	[4]
4	(a)	= (6.4 ×	$q_1q_2 / 4\pi\epsilon_0 x^2$ $10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times \{12 \times 10^{-6}\}^2)$ 10^{-17} N		C1 C1 A1	[3]
	(b)	wor	k dor	at P is same as potential at Q are $q\Delta V$ so zero work done		B1 M1 A0	[2]
	(c)	at F	, pot	int, potential is $2 \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 6 \times 10^{-6})$ ential is $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 3 \times 10^{-6}) + (6.4 \times 10^{-19})$ n potential = $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$	/ ($4\pi\epsilon_0 \times 9 \times 10^{-6}$)	C1 C1	
		ene	ergy	= $1.6 \times 10^{-19} \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$ = 1.0×10^{-22} J		C1 A1	[4]
5	(a)	bloo	cking ducin	age of charge' / storage of energy of direct current g of electrical oscillations			
			oothir y two	ng , 1 mark each)		B2	[2]
	(b)	(i)		acitance of parallel combination = 60 μF capacitance = 20 μF		C1 A1	[2]
		(ii)	•	across parallel combination = $\frac{1}{2} \times p.d.$ across single imum is 9V	capacitor	C1 A1	[2]
	(c)		ergy	nergy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $Q = CV$ = $\frac{1}{2} \times 4700 \times 10^{-6} \times (18^2 - 12^2)$ = 0.42 J		C1 C1 A1	[3]

	Page 4	4	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2010	9702	43	
6	(a) (i)		ght line with positive gradient ugh origin		M1 A1	[2]
	(ii)	zero	imum force shown at $\theta = 90^{\circ}$ force shown at $\theta = 0^{\circ}$ conable curve with F about $\frac{1}{2}$ max at 30°		M1 M1 A1	[3]
	(b) (i)		e on electron due to magnetic field e on electron normal to magnetic field and direction of	electron	B1 B1	[2]
	(ii)		te / mention of (Fleming's) left hand rule tron moves towards QR		M1 A1	[2]
7	(a) eith		the value of steady / constant voltage that produces same power (in a resistor) as the alternating that alternating voltage is squared and averaged the r.m.s. value is the square root of this averaged value.	-	M1 A1 (M1) (A1)	[2]
	(b) (i)	220	V		A1	[1]
	(ii)	156	V		A1	[1]
	(iii)	60 F	łz		A1	[1]
	R	wer = = 156 16 Ω	V _{rms} ² / R 6 ² / 1500		C1 A1	[2]
8	(a) (i)	num	ober = $(5.1 \times 10^{-6} \times 6.02 \times 10^{23}) / 241$ = 1.27×10^{16}		C1 A1	[2]
	(ii)		λN × $10^5 = \lambda \times 1.27 \times 10^{16}$ $4.65 \times 10^{-11} \text{ s}^{-1}$		C1 A1	[2]
	(iii)	$t_{\frac{1}{2}}$	$5 \times 10^{-11} \times t_{\frac{1}{2}} = \text{ln2}$ = $1.49 \times 10^{10} \text{ s}$		C1	- -
			= 470 years		A1	[2]
	(b) sar	mple /	activity would decay appreciably whilst measurements	s are being made	B1	[1]

				GCE AS/A LEVEL – May/June 2010	9702	43	
				Section B			
9	(a)	(i)		ion of the output (signal) is added to the input (signal) of phase by 180° / π rad / to inverting input		M1 A1	[2]
		(ii)	incre grea redu	reduces gain eases bandwidth ter stability ces distortion two, 1 mark each)		В2	[2]
	(b)	(i)	, ,	= 4.4 / 0.062 = 71		A1	[1]
		(ii)		= 1 + 120/ R 1.7 × 10 ³ Ω		C1 A1	[2]
	(c)	ma	ximur	mplifier not to saturate n output is $(71 \times 95 \times 10^{-3})$ =) approximately 6.7 V nould be +/- 9 V		B1 M1 A1	[3]
10	(a)	(i)	strai	n gauge		B1	[1]
		(ii)	piez	o-electric / quartz crystal / transducer		B1	[1]
	(b)	circ	;	coil of relay connected between sensing circuit output a switch across terminals of external circuit diode in series with coil with correct polarity for diode	and earth	B1 B1 B1	

second diode with correct polarity

centres of (+) and (-) charge not coincident

(crystal cut) so that it vibrates at resonant frequency

opposite faces /two sides coated (with silver) to act as electrodes

potential difference across crystal causes crystal to change shape

alternating voltage (in US frequency range) applied across crystal

11 *either* quartz *or* piezo-electric crystal

either molecular structure indicated

causes crystal to oscillate / vibrate

(max 6)

Mark Scheme: Teachers' version

Syllabus

Paper

B1

B1

В1

B1

B1

В1

B1

В1

[4]

[6]

Page 5

© UCLES 2010

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9702	43

- 12 (a) signal becomes distorted / noisy signal loses power / energy / intensity / is attenuated B1 [2]
 - (b) (i) either numbers involved are smaller / more manageable / cover wider range or calculations involve addition & subtraction rather than multiplication and division

(ii) $25 = 10 \lg(P_{\text{min}} / (6.1 \times 10^{-19}))$ C1 minimum signal power = 1.93×10^{-16} W C1 signal loss = $10 \lg(6.5 \times 10^{-3})/(1.93 \times 10^{-16})$ = 135 dB C1 maximum cable length = 135 / 1.6 C1 = 85 km so no repeaters necessary A1 [5]

В1

[1]