MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2010	9702	41	
		Section A			
1	(a) angl (by)	e (subtended) <u>at centre</u> of circle arc equal in length to radius		B1 B1	[2]
	(b) (i)	point S shown below C		B1	[1]
	(ii)	(max) force / tension = weight + centripetal force centripetal force = $mr\omega^2$ 15 = 3.0/9.8 × 0.85 × ω^2 ω = 7.6 rad s ⁻¹		C1 C1 C1 A1	[4]
2	(a) (i)	27.2 + 273.15 or 27.2 + 273.2 300.4 K		C1 A1	[2]
	(ii)	11.6 K		A1	[1]
	(b) (i)	$(< c^2 > \text{ is the})$ mean / average square speed		B1	[1]
	(ii)	$\rho = Nm/V$ with <u>N explained</u> so, $pV = 1/3 Nm < c^2 >$ and $pV = NkT$ with <u>k explained</u> so mean kinetic energy / $< E_{K} > = \frac{1}{2}m < c^2 > = 3/2 kT$		B1 B1 B1 B1	[4]
	(c) (i)	pV = nRT 2.1 × 10 ⁷ × 7.8 × 10 ⁻³ = $n × 8.3 × 290$ n = 68 mol		C1 A1	[2]
	(ii)	mean kinetic energy = $3/2 kT$ = $3/2 \times 1.38 \times 10^{-23} \times 290$ = $6.0 \times 10^{-21} J$		C1 A1	[2]
	(iii)	realisation that total internal energy is the total kinetic energy = $6.0 \times 10^{-21} \times 68 \times 6.02 \times 10^{23}$ = 2.46×10^5 J	rgy	C1 C1 A1	[3]
3	(a) (i)	to-and-fro / backward and forward motion (between two lir	mits)	B1	[1]
	(ii)	no energy loss or gain / no <u>external</u> force acting / constar	nt energy / consta	nt amplitu B1	de [1]
	(iii)	acceleration directed towards a fixed point acceleration proportional to <u>distance from the fixed point</u> /	displacement	B1 B1	[2]
	(b) acce so c	eleration is constant (magnitude) annot be s.h.m.		M1 A1	[2]

Page 3		3	Mark Scheme: Teachers' version		Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010	9702	41	
4	(a) abi as	ility to a resເ	o do work sult of the position/shape, etc. of an object			B1 B1	[2]
	(b) (i)	1	$\Delta E_{\rm gpe}$	= GMm/r = $(6.67 \times 10^{-11} \times \{2 \times 1.66 \times 10^{-27}\}^2) / (3.8 \times 7)^{-11}$ = 1.93×10^{-49} J	10 ⁻¹⁵)	C1 C1 A1	[3]
		2	$\Delta E_{ m epe}$	= $Qq / 4\pi\epsilon_0 r$ = $(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12} = 6.06 \times 10^{-14} J$) ⁻¹⁵)	C1 C1 A1	[3]
	(ii)	idea	that 2	$\Xi_{\rm K} = \Delta E_{\rm epe} - \Delta E_{\rm gpe}$		B1	
		E _κ = = (3 = 0.	= 3.03 3.03 × 1 .19 Me ^v	× 10 ⁻¹⁴ J 0 ⁻¹⁴) / 1.6 × 10 ⁻¹³ V		M1 A0	[2]
	(iii)	fusio	on may	occur / may break into sub-nuclear particles		B1	[1]
5	(a) (i) V _H c eitho		depends on angle between (plane of) probe and <i>B</i> -field <i>her</i> $V_{\rm H}$ max when plane and <i>B</i> -field are normal to each other		B1		
		or	V _H 2 V _H c	depends on sine of angle between plane and B-	field	B1	[2]
	(ii)	1	calcula	tes $V_{\rm H}r$ at least three times		M1	
			to 1 s.f or to 2	. constant so valid or approx constant so valid s.f., not constant so invalid		A1	[2]
		2	straigh	t line passes through origin		B1	[1]
	(b) (i)	e.m. rate cons	f. induc of char stant fie	ced is proportional / equal to nge of (magnetic) flux (linkage) eld in <u>coil</u> / flux (linkage) of <u>coil</u> does not change		M1 A1 B1	[3]
	(ii)	e.g.	vary c	urrent (in wire) / switch current on or off / use a.	.c. current		
		rota mov	te coil e coil <u>t</u>	owards / <u>away</u> from wire (1 mark each, max 3)		B3	[3]
6	(a) all coi	four d	iodes c ed for c	correct to give output, regardless of polarity orrect polarity		M1 A1	[2]
	(b) N _S V ₀	/ N _P = = √2	$= V_{\rm S} / \times V_{\rm rms}$	$V_{\rm P}$		C1 C1	
	rat	IO I	= 9.07	$(\sqrt{2} \times 240)$ or 1/37 or 0.027		A1	[3]

Page 4		4	Mark Scheme: Teachers' version	Syllabus	Paper			
			GCE AS/A LEVEL – May/June 2010	9702	41			
7	(a) arr	ow po	inting up the page		B1	[1]		
	(b) (i)	Eq = v	= Bqv = $(12 \times 10^3) / (930 \times 10^{-6})$ = $1.3 \times 10^7 \text{ m s}^{-1}$		C1 C1 A1	[3]		
	(ii)	Bqv q/m = 1.	= mv^2 / r = $(1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ 8 × 10^{11} C kg ⁻¹		C1 C1 A1	[3]		
8	(a) mo sar	momentum conservation hence momenta of photons are equal (but opposite) same momentum so same energy						
	(b) (i)	$(\Delta)E = (\Delta)mc^2$ = 1.2 × 10 ⁻²⁸ × (3.0 × 10 ⁸) ²			C1			
			$= 1.08 \times 10^{-11} \text{ J}$		A1	[2]		
	(ii)	Ε λ	= hc / λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (1.08 \times 10^{-11})$ = 1.84×10^{-14} m		C1 A1	[2]		
	(iii)	λ p	= h/p = $(6.63 \times 10^{-34}) / (1.84 \times 10^{-14})$ = 3.6×10^{-20} N s		C1 A1	[2]		
			Section B					
9	(a) (i)	poin	t X shown correctly		B1	[1]		
	(ii)	op-a non- if an	mp has <u>very large</u> / infinite gain inverting input is at earth (potential) / earthed / at 0 V	> †)	M1 M1			
		at ea	arth potential / 0 (V) same potential as inverting input	5()	A1	[3]		
((b) (i)	total (amp	input resistance = $1.2 \text{ k}\Omega$ plifier) gain (= $-4.2 / 1.2$) = -3.5		C1 C1			
		(tota	= 5.25 V I disregard of signs or incorrect sign in answer, max 2	marks)	A1	[3]		
	(ii)	(less (am) (volt	s bright so) resistance of LDR increases olifier) gain decreases meter) reading decreases		M1 M1 A1	[3]		

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
		-	GCE AS/A LEVEL – May/June 2010	9702	41	
10 (a)		X-ray ta repeated images combine repeated to build image c	ken of slice / plane / section d at different angles / data is processed ed / added to give (2-D) image of slice d for successive slices up a 3-D image an be viewed from different angles / rotated		B1 B1 B1 B1 B1 B1 max 6	[6]
	(b)	(i) 16			A1	[1]
		(ii) evic to g 3 6	lence of deducting 16 then dividing by 3 ive 2 5		C1 A1	[2]
11	(a)	frequen (in sync	cy of <u>carrier</u> wave <u>varies</u> (in synchrony) with signal hrony) with <u>displacement</u> of signal		M1 A1	[2]
	(b)	advanta (1 each, disadva (1 each,	ges e.g. <u>less</u> noise / <u>less</u> interference <u>greater</u> bandwidth / better quality max 2) ntages e.g. short range / more transmitters / line of sigh more complex circuitry greater expense max 2)	nt	B4	[4]
12	(a)	gain / lo 190 = ^{-/} or –190 power =	ss/dB = $10 \log(P_1/P_2)$ $10 \log(18 \times 10^3 / P_2)$ = $10 \log P_2 / 18 \times 10^3)$ = $1.8 \times 10^{-15} W$		C1 C1 A1	[3]
	(b)	(i) 11 (GHz / 12 GHz		B1	[1]
		(ii) e.g. to a	so that input signal to satellite will not be 'swamped' void interference of uplink with / by downlink		B1	[1]