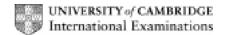
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/04


Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9702	04

Section A

- 1 **B1** (a) force per unit mass (ratio idea essential) [1] **(b)** $g = GM/R^2$ C₁ $8.6 \times (0.6 \times 10^7)^2 = M \times 6.67 \times 10^{-11}$ C1 $M = 4.6 \times 10^{24} \text{kg}$ **A1** [3] (c) (i) either potential decreases as distance from planet decreases potential zero at infinity and X is closer to zero potential $\alpha - 1/r$ and Y more negative M1 or so point Y is closer to planet. **A1** [2] (ii) idea of $\Delta \phi = \frac{1}{2}v^2$ C1 $(6.8 - 5.3) \times 10^7 = \frac{1}{2}v^2$ $v = 5.5 \times 10^3 \,\mathrm{ms}^{-1}$ A1 [2] 2 (a) either the half-life of the source is very long decay constant is very small or or half-life >> 40 days decay constant << 0.02 day⁻¹ **B**1 [1] or **(b)** number of helium atoms = $3.5 \times 10^6 \times 40 \times 24 \times 3600$ C₁ $= 1.21 \times 10^{13}$ either pV = NkT or pV = nRT and $n = N/N_A$ C₁ $1.5 \times 10^5 \times V = 1.21 \times 10^{13} \times 1.38 \times 10^{-23} \times 290$ $V = 3.2 \times 10^{-13} \,\mathrm{m}^3$ Α1 [3] (if uses $T/^{\circ}C$ or n = 1 or n = 4, then 1 mark max for calculation of number of atoms)
- (a) increasing separation of molecules / breaking bonds between molecules (allow atoms/molecules, overcome forces)
 doing work against atmosphere (during expansion)
 B1 [2]
 - (b) (i) 1 either bubbles produced at a constant rate / mass evaporates/lost at constant rate or find mass loss more than once and this rate should be constant or temperature of liquid remains constant B1 [1]

 2 to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) B1 [1] (do not allow 'prevent'/'stop')

(ii) use of power × time = mass × specific latent heat
$$(70-50) \times 5 \times 60 = (13.6-6.5) \times L$$
 C1 $L = 845 \text{ J g}^{-1}$ A1 [3]

	Pa	ge 3	3	Mark Scheme: Teachers' version	Syllabus	Paper	,
				GCE A/AS LEVEL – May/June 2009	9702	04	
4	(a)	(i)	(θ =	(a) (a)		B1	[1]
		(ii)	(SQ	=) $r \sin \omega t$ (allow any subject if all terms given)		B1	[1]
	(b)	this	is the $-\omega^2$	e solution of the equation $a = -\omega^2 x$ x is the (defining) equation of s.h.m.		M1 A1	[2]
	(c)	(i)	= .	ω / 2π 4.7 / 2π		C1	
			= (0.75 Hz		A1	[2]
		(ii)		r_{ω} (r must be identified) 4.7 × 12		C1	
				56 cm s ⁻¹		A1	[2]
5	(a)	(i)		of charge (on body) and its potential not allow reference to plates of a capacitor)		B1	[1]
		(ii)		ential at surface of sphere =) $V = Q / 4\pi \epsilon_0 r$ $Q / V = 4\pi \epsilon_0 r$		M1 A0	[1]
	(b)	(i)		$4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$ 4.0×10^{-11} F (allow 1 s.f.)		A1	[1]
		(ii)		CV $4.0 \times 10^{-11} \times 7.0 \times 10^{5}$ 2.8×10^{-5} C		A 1	[1]
	(c)	plastic is an insulator / not a conductor / has no free electrons charges do not move (on an insulator) either so no single value for the potential			B1 B1		
		or		charge cannot be considered to be at centre		B1	[3]
	(d)	eith ene	ergy	nergy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ = $\frac{1}{2} \times 4 \times 10^{-11} \times \{(7.0 \times 10^5)^2 - (2.5 \times 10^5)^2)\}$ = 8.6 J		C1 C1 A1	[3]

	Page 4		ı	Mark Scheme: Teachers' version	Syllabus	Paper 04	
				GCE A/AS LEVEL – May/June 2009 9702			
6	(a)	(uni	form)	agnetic flux density / magnetic field strength) <u>field</u> normal to wire carrying current of 1 A rce (per unit length) of 1 N m ⁻¹		B1 M1 A1	[3]
	(b)	(i)	force	e on magnet / balance is downwards (so by Newton's t e on wire is upwards P is a north pole	hird law)	B1 M1 A1	[3]
		(ii)	2.3 >	BIL and $F = mg$ (g missing, then 0/3 in (ii)) × $10^{-3} \times 9.8 = B \times 2.6 \times 4.4 \times 10^{-2}$ (g = 10, loses this in 0.20 T	mark)	C1 C1 A1	[3]
	(c)			For maximum current = $2.3 \times \sqrt{2}$ ation = $2 \times 2.3 \times \sqrt{2}$		C1	
		tota	ı varı	= 6.5 g		A1	[2]
7	pus obs	sh <u>kn</u> serve duced	own (curred) fiel	with meter (do not allow inclusion of a cell) pole into coil ent <u>direction</u> (not reading) d / field from coil repels magnet es rule to determine direction of magnetic field in coil		B1 B1 B1 B1	
	or		reve	rsing magnet direction gives opposite deflection on menduced current such as to oppose the change producing		B1 B1	[6]
8	(a)	if ex pho emi	(posu ton h ssion	eory predicts any frequency would give rise to emission are time is sufficiently long as (specific value of) energy dependent on frequency if energy greater than threshold / work function / from surface		M1 A1 M1 e	[4]
	(b)	of e	lectro	s packet/quantum of energy omagnetic radiation energy = h × frequency		M1 A1 B1	[3]
		wav	/elen	rticle has an (associated) wavelength gth = h/p is the momentum (of the particle)		B1 M1 A1	[3]
9	(a)	(i)	ΔΝ /	Δt (ignore any sign)		B1	[1]
		(ii)	ΔΝ /	N (ignore any sign)		B1	[1]
	(b)	A = 0.92	$A_0 \in A_0$	nust decay by 8% $\exp(-\ln 2 t / T_{\frac{1}{2}})$ or $A/A_0 = 1 / (2^{t/T})$ $\exp(-\ln 2 \times t / 5.27)$ or $0.92 = 1 / (2^{t/5.27})$		C1 C1 C1	
		= (allo	= 230 ow 2	34 years) days marks for $A/A_0 = 0.08$, answer 7010 days nark for $A/A_0 = 0.12$, answer 5880 days)		A1	[4]

		Section B		
10	(a)	(part of) the output is added to /returned to / mixed with the input and is out of phase with the input / fed to inverting input	B1 B1	[2]
	(b)	25 = 1 + (120 / R) $R = 5 k\Omega$	C1 A1	[2]
	(c)	(i) −2 V	A1	[1]
		(ii) 9 V	A1	[1]
11	(a)	pulse of ultrasound reflected at boundaries / boundary received / detected (at surface) by transducer signal processed and displayed time between transmission and receipt of pulse gives (information about) depth of boundary reflected intensity gives information as to nature of boundary (any four points, 1 each, max 4) (1)	B4	[4]
	(b)	(i) coefficient = $(Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$		
	(-)	$= (6.3 - 1.7)^{2} / (6.3 + 1.7)^{2}$ $= 0.33 (unit quoted, then -1)$	C1 A1	[2]
		(ii) fraction = $\exp(-\mu x)$ = $\exp(-23 \times 4.1 \times 10^{-2})$	C1	
		= 0.39	A1	[2]
		(iii) intensity = $0.33 \times 0.39^2 \times I$ = $0.050 I$ (do not allow e.c.f. from (i) and (ii) if these answers are greater than 1)	C1 A1	[2]
12	(a)	loss / reduction in power / energy / voltage/ amplitude (of the signal)	B1	[1]
	(b)	(i) attenuation = 125 × 7 = 875 dB	A1	[1]
		(ii) 20 amplifiers gain = 20 × 43 = 860 dB	A1	[1]
	(c)	gain = $10 \lg(P_1/P_2)$ overall gain = $-15 dB / attenuation$ is $15 dB$ $-15 = 10 \lg(P / 450)$	C1 C1	
		P = 14 mW	A1	[3]

Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009 Syllabus

9702

Paper

04

Page 5

Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE A/AS LEVEL – May/June 2009	9702	04	
13	serial-to	uning cct; (r.f.) amplifier; demodulator; -parallel converter; DAC; (a.f.) amplifier 2 sets of 2 marks each			
		identified correctly		B2	
	5 blocks	ror or omission, deduct 1 mark) in correct order locks in correct order, allow 1 mark)		B2	[4]
	(b) phone tr	ansmits signal (to identify itself)	(1)		

signal received by (several) base stations

computer selects base station with strongest signal

transferred to cellular exchange

assigns a (carrier) frequency

(any four, 1 each, max 4)

(1)

(1)

(1)

(1)

B4

[4]