CAMBRIDGE INTERNATIONAL EXAMINATIONS

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 8702/3

PHYSICS (PRACTICAL)

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

Page 1 of 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8702	3

Measurements

M1	Measurements	6
	One mark for each set of readings	
	Intervals must be correct or -1	
	Check values for $\frac{\sin \alpha}{\alpha}$	
	Values should be 0.0111; 0.0123; 0.0134; 0.0144; 0.0153; 0.0161	
M2	Position of O	1
	Measure diameter and divide by 2	
	Allow folding of the card ideas	
М3	Radius value with unit	1
	Accept 14.5 cm ± 0.2 cm	
M4	% uncertainty in <i>r</i>	1
	Accept 0.68%, 0.7%, 1%	
	Working must be correct	
	N/A 0.34% or 1.37%	
M5	Value of y	1
	Accept 6.3 cm ± 0.2 cm	
M6	Quality of results	2
	Judge by scatter of points about the line of best fit	
	A shallow curve gets $\frac{1}{2}$	
	5 trend plots gets $\frac{1}{2}$	

Presentation of results

R1	Column headings	1
	Every column heading must have a quantity	
	Expect to see y/cm, but ignore degrees if missing	
	N/A sin α /degree	
R2	Consistency of raw values of y only	1
	Values must be given to the nearest millimetre	
R3	SF in final value of <i>r</i>	1
	Allow 2 or 3 sf only	

Graphical work

G1	Axes	1
	The plotted points must occupy at least half the graph grid in both the <i>x</i> and <i>y</i> directions. The axes must be labelled.	
	Do not allow awkward scales.	
G2	Plotting of points	1
	Check one suspect plot. Work to half a small square.	
G3	Line of best fit	1
	At least 5 trend plots needed.	
	Allow a straight line to be drawn through a shallow curved trend.	

Page 2 of 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8702	3

G4 Determination of gradient

1

Check the read-offs and that $\Delta y / \Delta x$ has been calculated.

The length of the hypotenuse must be greater than half the length of the drawn line.

Analysis of results

A1	Gradient equated with $\frac{120r}{\pi}$	1
A2	Correct working for <i>r</i>	1
A3	<i>r</i> in range 14.0 cm to 15.2 cm	1
A4	Unit of <i>r</i> correct	1
	Unit must be consistent with the value	
A5	Sensible comment relating to <i>r</i> value	2
	One mark for good agreement/same value/similar value/slightly different	
	One mark for sensible comment as to why the values are similar/not the same;	
	e.g. card is not a perfect circle, % uncertainty is small, theory is correct.	
	Statement 'values are different' scores zero.	
	Vague answers such as 'inaccuracies', 'errors' or 'graph drawing' are not to be credited.	

Special cases

S1	Something very wrong;
	M1, -2; M6 = 0 (and probably A3 = 0 also)
S2	Substitution method for <i>r</i> ;
	A1 = A2 = 0
S3	Uses 2α instead of α ; calculator in radian mode; subtraction method for α ;
	M1, -1; M6 = 0; A3 = 0
S4	POT error;
	A3 = 0