

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2017

Physics

Assessment Unit AS 2 assessing Module 2: Waves, Photons and Astronomy

Centre Number

Candidate Number

SPH21

[SPH21] THURSDAY 8 JUNE, AFTERNOON

TIME

1 hour 45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided. Do not write outside the boxed area on each page or on blank pages. Complete in black ink only. Do not write with a gel pen. Answer all seven questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

Your attention is drawn to the Data and Formulae Sheet which is inside this question paper. You may use an electronic calculator.

<u>10</u>685

24SPH2101

ÐÐ

24SPH2102

(iii)	Estimate how far the other galaxy is away from Earth in mega	light years.
	[1 mega light year (Mly) = 9.46×10^{18} km.]	

Distance = _____ Mly

(c) Use the value for the Hubble constant, H_0 , in the Data and Formulae Sheet to obtain a value for the age of the Universe in billions of years (giga years).

Age = _____ billion years

10685

24SPH2103

[3]

[Turn over

[3]

2	Pot	assium has a work function of 2.29 eV.	
	(a)	Calculate the maximum wavelength of electromagnetic radiation that would cause photoelectric emission if incident on a clean potassium surface.	
	(b)	Wavelength = m A photon of energy 8.69×10^{-19} J is incident on a clean potassium surface. Calculate the maximum velocity with which an electron can be emitted.	[4]
		Maximum velocity = m s ⁻¹	[4]
	(c)	Explain why the velocity of other emitted electrons will be less than this maximum value.	
10685			_ [2]

24SPH2104

DD 1g Learning

3

			[Turn over
			[1]
	(ii)	What observation associated with photoelectric emission could be successfully explained by the wave model?	
			[2]
(a)	(i)	Photoelectric emission can only be fully explained by the photon mo State which observations relating to photoelectric emission can only explained by the photon model and not by the wave model	del. be

*24SPH2106	*

-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	

DD 1g Learning

(C)	Calculate the de Broglie wavelength	, in nanometres,	of an electron	that has a
	velocity of 2.50 \times 10 ⁶ m s ⁻¹ .			

Wavelength = _____ nm

[4]

10685

[Turn over

24SPH2107

4 An experiment is performed to determine the refractive index of the material of a rectangular transparent block. The results of the experiment are used to plot a graph of sin r against sin i as shown in **Fig. 4.1**.

N.B. r is the angle of refraction and i is the angle of incidence.

(a) Outline the experimental procedure that would enable results to be taken so that the graph shown in **Fig. 4.1** can be drawn.

_ [4]

10685

24SPH2108

(b) (i) Use data from Fig. 4.1 to determine the refractive index of the mate which the transparent block was made.	erial from
Refractive index =	[2]
(ii) Determine the critical angle for the material.	
Critical angle = °	[3]
(iii) Determine the speed of visible light during its passage through the from which the transparent block was made.	material
$Cread$ ma^{-1}	[0]
Speea = ms '	[3]
10685	[Turn over

24SPH2109

(c) (i) Complete Fig. 4.2 by labelling the structures of the optical fibre, and complete the passage of the ray through the fibre.

(ii) Describe how optical fibres are used in a flexible endoscope.

	[3]	
10685		

24SPH2110

[4]

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

10685

[Turn over

24SPH2111

5 (a) (i) Fig. 5.1 shows a 3.0 cm high object, OA, placed 300 cm from a converging lens, L. On the grid of Fig. 5.1, complete the scale diagram to determine the focal length of the converging lens if a real image, 2.0 cm high is formed.

24SPH2112

Œ

(b)	(i)	When used as a magnifying glass a lens of focal length 16 cm can produce an upright (erect) image with a magnification of 2.2. How far is the object from the lens when this magnification is achieved?		
		Position	_ cm	[4]
	(ii)	Calculate the power of this	e lens in dioptres, D.	
		Decuer	D	101
		Power =	_ D	[2]
				[Turn over

24SPH2113

85			
			[1]
	(iv)	Explain how the correcting lens improves his vision.	[1]
	(iii)	What effect does this condition have on his vision?	
			[1]
	(ii)	What is the cause of this condition?	[1]
(-)		a lens of power –2.2 D.	

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

10685

[Turn over

24SPH2115

Ð

Œ

24SPH2116

6

10685

resonance.

(C)	Explain the difference	between a	'node' and	an 'antinode'	in this context.
-----	------------------------	-----------	------------	---------------	------------------

[2]

(d) The pipes are 0.68 m long and the speed of sound in air is 330 m s^{-1} . Determine the frequency of the note emitted in each pipe.

Frequency (1st mode of vibration) = _____ Hz Frequency (4th mode of vibration) = _____ Hz [4]

10685

[Turn over

24SPH2117

7 (a) In the Young's slits interference experiment, light rays from two slits (s_1 and s_2) meet on a screen to produce an interference pattern.

Use the twin concepts of coherence and path difference to explain how constructive interference could occur at position f on the screen on **Fig. 7.1**.

y Learning Rowardin DD y Learning

Ð

CC Rowardon DD

Rewardin DD

Rewardin DD

Rowardin DD

Œ

ÐÐ

Rewardin DD

Œ

200 g Learning Constant DO 200 yg Learning DO 200 g Learning

Participation

Partiter

Part

Rewardin PDD 2g Learning

yg Learning OC Rewardin DD

Œ

10685

24SPH2118

(b) In a Young's slits interference experiment to determine the wavelength of laser light the slits are measured to be 0.58 mm wide and they are 1.24 mm apart. The distance between the first bright fringe and the sixth bright fringe on interference pattern produced was 9.29 mm. The screen on which the interference pattern was formed was 3.74 m from the laser and the laser was 10 cm from the slits. The wavelength can be calculated using the equation

$$\lambda = \frac{ay}{d}$$

(i) Identify the magnitude of the quantities a, y and d:

(ii) Calculate the wavelength of the laser light.

Wavelength = _____ m

10685

[Turn over

[1]

24SPH2119

(c) Another technique for determining the wavelength of monochromatic light is to use a diffraction grating. Fig. 7.2 illustrates the effect of the diffraction grating on incident monochromatic light. n = 0, 1, 2 represent the direction of different orders of diffraction maxima.

Fig. 7.2

The diffraction grating has 300 lines per millimetre and the angle between the two second orders is 40.2° .

(i) Determine the wavelength of the incident light.

Wavelength = _____ m

10685

24SPH2120

[4]

(ii) Determine the highest order of diffraction fringes that it is possible to observe using this diffraction grating with this wavelength of light.

Highest n = _____

[3]

THIS IS THE END OF THE QUESTION PAPER

10685

24SPH2121

BLANK PAGE

DO NOT WRITE ON THIS PAGE

24SPH2122

BLANK PAGE

DO NOT WRITE ON THIS PAGE

10685

24SPH2123

DO NOT WRITE ON THIS PAGE

	For Exa use	miner's only
	Question Number	Marks
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	Total Marks	
Examiner Number		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

221312

24SPH2124

Œ