

ADVANCED General Certificate of Education 2016

Physics

Assessment Unit A2 2

assessing

Fields and their Applications

[AY221]

THURSDAY 9 JUNE, AFTERNOON

MARK SCHEME

Subject-specific Instructions

In numerical problems, the marks for the intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the final correct answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply for formal proofs and derivations, which must be valid in all stages to obtain full credit.

Do not reward wrong physics. No credit is given for consistent substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation. However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on physically correct equation, must gain full credit. Designate this by writing **ECF** (Error Carried Forward) by your text marks.

The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer marks, but 10^{n} errors (e.g. writing 550 nm as 550×10^{-6} m) count only as arithmetical slips and lose the answer mark.

1	(a)	(i)	Force of attraction Proportional to (product of) masses Inversely proportional to square of mass separation		[1] [1] [1]	[3]	AVAILABLE MARKS
		(ii)	Stating $F = \frac{GMm}{d^2}$				
			Stating $F = mr\omega^2$ Algebra to obtain $T^2 = \frac{4\pi^2 d^3}{GM}$ or equivalent	nt	[1] [1]		
			Penalty [–1] for not using the symbols in F	ig 1.1		[3]	
	(b)	(i)	$T^{2} = \frac{4\pi^{2}d^{3}}{GM} = \frac{4\pi^{2}(5.27 \times 10^{8})^{3}}{(6.67 \times 10^{-11})(5.68 \times 10^{26})}$	subs	[1]		
			$T = 3.91 \times 10^5 \text{ s}$	ans	[1]		
			T = 4.52 days SE 0.071 days [2] and 1.43 × 10 ⁻⁴ days [2]	ECF* <i>T</i> /s]	[1]	[3]	
		(ii)	$g = \frac{Gm}{r^2}$	equation	[1]		
			$g = \frac{(6.67 \times 10^{-11}) (2.31 \times 10^{21})}{(7.64 \times 10^5)^2}$	subs	[1]		
			$g = 0.26 (N kg^{-1})$	ans	[1]	[3]	12
2	(a)	E =	$=\frac{Q}{4\pi\varepsilon_0 r^2}$	equation	[1]		
		E =	$\frac{40 \times 10^{-6} (8.99 \times 10^{9})}{(5 \times 10^{-2})^{2}}$	subs	[1]		
		E =	1.44 × 10 ⁸ (N C ⁻¹)	ans	[1]	[3]	
	(b)	F =	$EQ = (1.44 \times 10^8) (60 \times 10^{-6})$	equation or subs	[1]		
		F =	8640 (N)/8630 ECF for <i>E</i>	ans	[1]		
		Tow	vards the +40 μC		[1]	[3]	6

3	(a)	(i)	Charging circuit with no resistance Discharging circuit with resistance Symbol(s) for C, R, supply		[1] [1]		AVAILABLE MARKS
			Sample circuit for full marks				
						[3]	
		(ii)	Start discharge and stop clock/record voltage Record voltage every 10 seconds (or 5, 15,	je regularly 20s)	[1] [1]	[2]	
	(b)	(i)	Evidence that $V_{\tau} = 0.37V_0$ $\tau = 56-60$ (s) 56s-64s	ans	[1] [1]	[2]	
			Alternative: 3 correct subs into $V = V_0 C^{-\tau/CR}$ CR in range 56–64 s		[1] [1]		
		(ii)	Total capacitance, $C_T = 4.72 \times 10^{-4}$ (F) Capacitance = 1.42 × 10 ⁻³ (F)	ECF τ ECF* C _T	[1] [1]	[2]	9
4	(a)	Φ = Φ = Φ =	BA $(0.129)\pi(5 \times 10^{-3})^2$ 1.01×10^{-5} (Wb)	eqn subs answer	[1] [1] [1]	[3]	
	(b)	(i)	F = Bil	eqn	[1]		
			$F = (0.01) \left(\frac{15}{2.4 \times 10^{-4}} \right) (0.013)$	subs	[1]		
			F = 8.1 (N) ECF I and B S \Rightarrow 93.4 (N) [2]	answer	[1]	[3]	
		(ii)	Out of (the plane of) the paper Fleming's LH Rule or RH grip rule & motor of Current flows down the rod (field $L \rightarrow R$) or Wrong direction \rightarrow can only be awarded the	effect/motor rule + \rightarrow – e second mark	[1] [1] [1]	[3]	9

5	(a)	E = E = E =	BAN/t 4.01 × 10 ⁻⁶ (2 823 (V)	25 × 10 ³)(8.2 × 10 ³)/(1)	subs ans		[1] [1] [1]	[3]	AVAILABLE MARKS
	(b)	(i)	$V_{\rm S} = \frac{V_{\rm P}N_{\rm S}}{N_{\rm P}} =$	$=\frac{(230)(24)}{1104}$	eqn or	subs	[1]		
			$V_{\rm s} = \frac{(230)(2}{1104}$	$\frac{24}{4} = 5 (V)$	answe	r	[1]	[2]	
		(ii)	$Eff = \frac{P_{\rm S}}{P_{\rm P}} = 1$	$\frac{V_{\rm S}I_{\rm S}}{V_{\rm P}I_{\rm P}} = \frac{5.06}{5.98}$	eqn		[1]		
			$Eff = \frac{(4.6)}{(230)}$	$\frac{(1.1)}{(0.026)} = 0.85$			[1]	[2]	7
			$S \Rightarrow 0.15$ [1]					
6	(a)	(i)	Structure	Name					
			1	(Hot) cathode		-			
			2	positive electrode/anode		-			
			3	x-plates					
			4	y-plates					
			5	Fluorescent screen					
			$\left[\frac{1}{2}\right]$ each – ro	ound down				[2]	
		(ii)	Height of tra y-amp gain Accept 'mult	ice/amplitude in context, mult (or equivalent) tiplied by' on either mark line	iplied by		[1] [1]	[2]	
	(b)	Tim	e in field, <i>t</i> =	$\left(\frac{0.12}{5.6 \times 10^7}\right) = 2.14 \times 10^{-9} s$	subs o	r ans	[1]		
		Eleo	ctric field stre	ength, $E = \frac{2500}{0.08} = \frac{V}{d}$			[1]		
		= 31	1250 N C ⁻¹		ans		[1]		
		Acc	eleration $\left(a\right)$	$=\frac{Eq}{m}=\frac{(31250)(1.6\times10^{-19})}{9.11\times10^{-31}}$) = 5.49 ×	10 ¹⁵ m s ^{-*}	1		
					ans	ECF* <i>E</i>	[1]		
		Disp	placement $(s$	$s = \frac{1}{2} at^2 = \frac{1}{2} (5.49 \times 10^{15}) (2.1)$	$4 \times 10^{-9})^2$	= 0.0126	(2
					ans		t [1]	[5]	9

7	(a)	Particle	Mass/u	Charge/C	Lepton number	Baryon number	,	AVAILABLE MARKS		
		Electron	1/2000 or 1/1840 or 5.5 × 10 ⁻⁴	-1.6 × 10 ⁻¹⁹	+1	0				
		Positron	Consistent with above answer	+1.6 × 10 ⁻¹⁹	-1	0				
		[1] for each li	ine with all resp	onses correct			[2]			
	 (b) Dees/semicircular electrodes Particles accelerated by voltage between dees Fixed a.c. frequency for voltage Magnetic field perpendicular to plane of particle motion/B-field causes deflection 									
		Particles follo Radius incre	ow a spiral path ases (as velocit	y increases)						
		First four poi	[5]							
		Quality of written communication								
		2 marks The candidate expresses ideas clearly and fluently, through well-linked sentences and paragraphs. Arguments are generally relevant and well structured. There are few errors of grammar, punctuation and spelling.								
	1 mark The candidate expresses ideas clearly, if not always fluently. There are some errors in grammar, punctuation and spelling, but not such as to suggest weakness in these areas.									
		0 marks The candidate expresses ideas satisfactorily, but without precision. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling are sufficiently intrusive to disrupt the understanding of the passage.								
	(c)	(i) Explana All the m conserve Two gan	tion: hass is converte e mass/energy hma photons pr	ed to energy/anni oduced to conse	hilation/ rve momentum	[1] [1]	[2]			
		(ii) Calculat $E = \Delta mc$ $E = (9.1^{\circ})$ E = 8.20 E = 513 $S \Rightarrow 102$ $S \Rightarrow 256$	ion: $(J^2)^{2}$ 1 × 10 ⁻³¹)(3 × 1 0 × 10 ⁻¹⁴ (J) (keV) 25 (keV) → [3] 6 (keV) → [3]	0 ⁸) ² s a a	eqn ubs ins ins ECF* E/J	[1] [1] [1] [1]	[4]	15		

8	(a)	(i) $n \rightarrow p + e + \overline{v}_e$ $0 \rightarrow +1 + -1 + 0$ and charge on each side is zero				[1]	AVAILABLE MARKS
		(ii)	(ii) $n \rightarrow p + e + \overline{v}_e$ $0 \rightarrow 0 + +1 + -1$ and lepton number on each side is zero			[1]	
	(b)	Non-leptons are hadrons/baryons [1] Hadrons (baryons) have a quark structure (leptons are fundamental) or experience the strong force				[2]	
	(c)	(i)	Weak (nuclear) force W– (boson)		[1] [1]	[2]	
		(ii)	(Decays into) an electron and an antineutrino			[1]	7
9	(a)	(i)	$\lambda = \frac{0.76}{2.5} = 0.304 (\text{m})$		[1]		
			$f = \frac{V}{\lambda} = \frac{18.3}{0.304} = 60.2$ (Hz)		[1]		
			60.2 × 60 = 3612 = 3600 to 2 dp		[1]	[3]	
		(ii)	$F = m\omega^{2}x \ (F = ma \text{ and } a = -\omega^{2}x)$ $\omega = 2\pi f = 120\pi \ (\text{allow } 120.4\pi) = 377 \ (\text{rad s}^{-1})$ $F = 0.12(120\pi)^{2}(0.086) \qquad \text{s}$ $F = 1467 \ (\text{N}) \ (1480)$ $S = 5.28 \times 10^{6} \rightarrow [3]$	eqn(s) ans subs ECF* ω or a ans	[1] [1] [1] [1]	[4]	
	(b)	(i)	E = ItV 0.03 = (13.6 × 10 ⁻³)(1.20 × 10 ⁻³)V p.d. = 1838 (V)	eqn subs ans	[1] [1] [1]	[3]	
		(ii)	$I = \frac{Q}{t} \left(= \frac{Ne}{t} \right)$ Q = 1.63 × 10 ⁻⁵ (C)	eqn	[1]		
			$0.0136 = \frac{N(1.6 \times 10^{-19})}{1.2 \times 10^{-3}}$	subs	[1]		
			$N = 1.02 \times 10^{14}$ ECF for Q	ans	[1]	[3]	
	(c)	92=	$= 10 \log_{10} \frac{I}{10^{-12}} = 1.58 \times 10^{-3} (\text{W m}^{-2})$	ans	[1]		
		1.30	$\frac{5 \times 10}{400} = 3.96 \times 10^{-6} (W m^{-2}) ECF I/W m^{-2}$	ans	[1]		
			$\left(\operatorname{not}\frac{\mathbf{GZ}}{400}\right)$				
		dB⁼	$= 10 \log_{10} \frac{3.96 \times 10^{-6}}{10^{-12}} = 66 \text{ ans ECF* redu}$	ced intensity	[1]	[3]	16
						Total	90
				·		Total	90