Rewarding Learning

ADVANCED
General Certificate of Education January 2014

Physics

Assessment Unit A2 1
assessing
Momentum, Thermal Physics, Circular Motion, Oscillations and Atomic and Nuclear Physics
[AY211]

MONDAY 20 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all eleven questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90 .
Quality of written communication will be assessed in Question 10.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.
Question 11 contributes to the synoptic assessment required of the specification.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total Marks	

Candidate Number
\qquad

BLANK PAGE

If you need the values of physical constants to answer any questions in this paper they may be found in the Data and Formulae Sheet.

Answer all eleven questions

1 (a) An explosion splits an object, initially at rest, into two pieces of unequal mass. A student observes that the less massive of the two pieces moves with a faster speed than the heavier piece and in the opposite direction. Explain these observations.
\qquad
\qquad
(b) (i) During a ten pin bowling game a player has one pin left to knock
down. The player rolls a 7.26 kg bowling ball down the lane and it hits the stationary pin, of mass 1.47 kg , head on at a speed of $8.15 \mathrm{~m} \mathrm{~s}^{-1}$. After the collision the pin moved forwards at a speed of $13.32 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the speed of the ball after the collision.

Speed of ball = \qquad ms^{-1}
(ii) 1. State what is meant by an inelastic collision.
\qquad
\qquad
2. Show, by calculation, that the collision between the bowling ball and the pin was inelastic.

2 (a) State the difference between a real gas and an ideal gas in terms of the internal energy of the gas molecules.
\qquad
\qquad
(b) The coldest known place in the universe is the Boomerang Nebula, 5000 light years away from us in the constellation Centaurus.
Scientists reported in 1997 that gases blowing out from a central dying star have expanded and rapidly cooled to a temperature of 1.0 K . Usually, gas clouds in space are at a temperature of 2.7 K .

Calculate the difference between the average kinetic energy of a gas molecule at a temperature of 1.0 K compared to 2.7 K .

Kinetic energy difference = \qquad J J
(c) Fig. 2.1 shows a graph of pressure against mean square speed of a fixed mass of carbon dioxide molecules trapped inside a $50 \mathrm{~cm}^{3}$ container of fixed volume.

Fig. 2.1
(i) Write down an equation for the gradient of the line of Fig. 2.1 in
terms of N the number of molecules, m the molecular mass and V the gas volume.

Gradient =
(ii) The molar mass of carbon dioxide is $44.01 \mathrm{~g} \mathrm{~mol}^{-1}$. Use the graph of Fig. 2.1 to calculate the number of carbon dioxide molecules in the container.

Number of carbon dioxide molecules $=$ \qquad
\qquad

3 (a) An electrical method to determine the specific heat capacity of iron is carried out using the apparatus shown in Fig. 3.1.
(i) Complete Fig. 3.1 by drawing a suitable circuit containing an ammeter and voltmeter that will allow the energy input to the heater to be calculated.
(ii) The circuit is turned on at the same time as a stopclock is started. After a considerable time the circuit is switched off and the time and temperature recorded immediately.

Explain why this procedure will result in a value for the specific heat capacity of iron that is higher than the accepted value and state how the procedure should be adapted to improve the value obtained. Assume the insulation is perfect and that there is no energy loss to the surroundings.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In a non-electrical method to determine the specific heat capacity of iron, a student took a 15 g piece of the iron and placed it into boiling

Examiner Only

| Marks | Remark |
| :--- | :--- | water until it reached a temperature of $100.00^{\circ} \mathrm{C}$. The iron was then removed from the boiling water and immediately plunged into 100 g of water at $25.00^{\circ} \mathrm{C}$.

The hot iron cools down and the water heats up until both reach the same end temperature, which was measured to be $26.36^{\circ} \mathrm{C}$. If the specific heat capacity of water is $4184 \mathrm{Jkg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and energy losses to the container holding the water at $25.00^{\circ} \mathrm{C}$ are negligible, calculate the specific heat capacity of the iron.
\qquad $\mathrm{Jkg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

4 Two examples of objects that move with circular motion are the Earth, which rotates once on its axis every 24 hours and the blade of a fan, which completes 24 revolutions per minute. The radius of the Earth is 6400 km and the fan blade has a radius of 40 cm .
(a) The angular velocity of a point on the edge of the fan is much greater than the angular velocity of a point on the surface of the Earth at the equator, while the linear velocity of these same points is much greater on the Earth than on the fan.

Carry out appropriate calculations and complete Table 4.1 to show that the above statement is true.

Table 4.1

	Point on edge of fan	Point on surface of Earth at the equator
Angular velocity/rad s${ }^{-1}$		
Linear velocity/m s ${ }^{-1}$		

(b) (i) Explain why the linear velocity of a point on the Earth's surface at the equator is so much larger than at the edge of the fan, even though it has a much smaller angular velocity.
\qquad
(ii) Fig. 4.1 shows a circle representing the Earth. Explain why it is necessary to know that the point on the surface of the Earth is at the equator when calculating the linear velocity. Draw on Fig. 4.1 to help explain your answer.

Fig. 4.1

5 (a) Simple harmonic motion and circular motion have some similarities. The period is one example.
(i) Define the period of an object moving in circular motion.
\qquad
\qquad
(ii) Define the period of an object moving in simple harmonic motion.
\qquad
\qquad
(iii) One difference between circular motion and simple harmonic motion is due to the force that causes the motion. Describe the differences in the magnitude and direction of the forces that act to keep an object moving with circular motion and an object moving with simple harmonic motion. In both cases the period of the object is constant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Describe how the amplitude and period of oscillation change over time for a lightly damped system and explain how and why the average speed of the object oscillating must also change.
\qquad
\qquad
\qquad
\qquad
\qquad

6 (a) An iron nucleus contains 56 nucleons of which 26 are protons. Calculate the density of the nucleus of an iron atom.

Take $r_{0}=1.2 \mathrm{fm}$ and the volume of a sphere as $\frac{4}{3} \pi r^{3}$

Density $=$ \qquad $\mathrm{kg} \mathrm{m}^{-3}$
(b) An iron cube with 5 cm sides has a mass of 0.984 kg . Calculate the density of iron metal.

Density = \qquad $\mathrm{kg} \mathrm{m}^{-3}$
(c) What does the difference in your answers to (a) and (b) tell you about the composition of iron atoms?
\qquad
\qquad

7 A large number of dice can be used to model the radioactive decay process. When the dice are thrown, any that land as a " 6 " are said to have decayed and are removed from the pile before the next throw.
(a) In this model, the "throw number" is equivalent to the "time taken" in radioactive decay. What does the number of dice remaining after each throw represent?
(b) A teacher carries out the experiment in class and records the results in Table 7.1. The initial number of dice was 250.
(i) Calculate the missing values from Table 7.1 and enter them into the table.

Table 7.1

throw number	number of 6s	number of dice remaining, \mathbf{N}
1	38	212
2	32	180
3	29	
4	23	128
5	21	107
6	15	92
7	15	66
8	7	60
10		53

\qquad
(ii) Plot a graph of the number of dice remaining against throw number on the grid of Fig. 7.1

Fig. 7.1
(iii) From your graph, calculate a value equivalent to the half-life of the dice. Give your answer to 1 decimal place.

Half-life equivalent = \qquad throws
(iv) Calculate the hypothetical decay constant from your answer to (iii).

Decay constant $=$ \qquad throw ${ }^{-1}$
(v) How does this compare to the actual probability of throwing a 6 ?
\qquad
\qquad

8 (a) Einstein's equation relating mass and energy states that if energy is added into a system the mass of the system will increase.

If a 1 kg bar of gold is heated so that its temperature rises by $20^{\circ} \mathrm{C}$, it gains $2.58 \times 10^{3} \mathrm{~J}$ of energy. Calculate the mass increase in the bar of gold when it is heated by $20^{\circ} \mathrm{C}$.

Mass increase = \qquad kg
(b) The mass increase in a 1 kg bar of gold is so small that it can be considered negligible. Einstein's equation can be more usefully applied in nuclear reactions. Explain how the equation applies in nuclear reactions.
\qquad
\qquad
\qquad
(c) Draw the curve showing how the binding energy per nucleon varies with mass number on the axes in Fig. 8.1. Indicate clearly on the diagram the region where nuclei undergo fission and the region where nuclei undergo fusion.

Fig. 8.1

9 The fate of the neutrons produced in the fission process is the key to understanding the difference between a controlled nuclear reaction, which takes place inside a nuclear reactor, and an uncontrolled nuclear reaction, which leads to the explosion of an atomic bomb.
(a) Why is there the possibility of an uncontrolled nuclear reaction when nuclear fission occurs? Describe the process by which this would happen.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) All nuclear reactors have a Self-Controlled Remote Automatic

Mechanism (SCRAM): in the case of an accident, it inserts the
control rods completely into the core of the reactor in a very short
time.
Explain how this will stop the nuclear reactions taking place and in
as short a time as possible.
Mechanism (SCRAM): in the case of an accident, it inserts the
control rods completely into the core of the reactor in a very short
time.
Explain how this will stop the nuclear reactions taking place and in
as short a time as possible.
Mechanism (SCRAM): in the case of an accident, it inserts the
control rods completely into the core of the reactor in a very short
time.
Explain how this will stop the nuclear reactions taking place and in
as short a time as possible.
Mechanism (SCRAM): in the case of an accident, it inserts the
control rods completely into the core of the reactor in a very short
time.
Explain how this will stop the nuclear reactions taking place and in
as short a time as possible.
Mechanism (SCRAM): in the case of an accident, it inserts the
control rods completely into the core of the reactor in a very short
time.
Explain how this will stop the nuclear reactions taking place and in
as short a time as possible.
\qquad
\qquad
\qquad
(ii) Name another safety feature of a fission reactor and state its function.
\qquad
\qquad
(c) "When a Nuclear Reactor Dies, $\$ 98$ Million is a Cheap Funeral," is a quote from Smithsonian Magazine, in October 1989. Explain why this quote is relevant to a fission reactor.
\qquad
\qquad
\qquad

In this question you will be assessed on the quality of your written communication. You are advised to answer in continuous prose.

10 Discuss the possibility of using nuclear fusion in a power station as a useful energy resource in the $21^{\text {st }}$ century. Include in your answer:

- The equation for the most suitable terrestrial fusion reaction.
- The advantages associated with nuclear fusion.
- The problems associated with achieving nuclear fusion.
- One method being used to try to overcome some of the practical difficulties.
\qquad
Quality of written communication

This question contributes to the synoptic requirement of the specification. In your answer you will be expected to bring together and apply principles and concepts from different areas of physics, and to use the skills of physics in the particular situation described.

11 The volume of fluid that passes through a narrow tube in one second is the volume flow rate, Q in $\mathrm{m}^{3} \mathrm{~s}^{-1}$. This is given by Poiseuille's Law, Equation 11.1

$$
Q=\frac{\pi r^{4} P}{8 \eta L} \quad \text { Equation } 11.1
$$

where r is the radius of the tube, P the pressure difference between the ends of the tube, L the length of the tube and η, a constant known as the viscosity of the fluid.
(a) Use Equation 11.1 to work out the base units of viscosity, η.

Base units =
(b) In an experiment to verify Poiseuille's Law, a fluid was passed down
tubes of different lengths and the fluid that moved through the tube in one minute was collected in a measuring cylinder.
The results of the experiment are shown in Table 11.1.
Table 11.1

L / m	$Q / \mathrm{m}^{3} \mathrm{~s}^{-1}$	$\frac{1}{L} / \mathrm{m}^{-1}$
0.20	3.22×10^{-4}	5.0
0.25	2.60×10^{-4}	4.0
0.30	2.14×10^{-4}	3.3
0.35	1.76×10^{-4}	2.9
0.40	1.63×10^{-4}	2.5

(i) Values of the volume flow rate, Q, have been calculated. Describe how they would have been found from the method used and results taken.
\qquad
\qquad
(ii) Explain how a graph of Q against $1 / L$ can be used to verify Poiseuille's Law if the constant values for r and η are known and the pressure difference P is maintained at the same known value throughout.
\qquad
\qquad
\qquad
\qquad
(c) Fig. 11.1 shows the plotted graph of the results.

Fig. 11.1
(i) One result appears to be anomalous. Identify at which length the
anomalous result occurred and state the correct value of Q assuming the graph is correct.
L at which the anomalous result occurred $=$ \qquad m

Correct value of $Q=$ \qquad $\mathrm{m}^{3} \mathrm{~s}^{-1}$
(ii) Calculate the gradient of the graph and state the units of the gradient.

Gradient = \qquad
Units of gradient $=$

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE Physics

Data and Formulae Sheet for A2 1 and A2 2

Values of constants

speed of light in a vacuum	$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
permittivity of a vacuum	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
	$\left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right)$
elementary charge	$e=1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
(unified) atomic mass unit	$1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$
mass of electron	$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
mass of proton	$R=1.67 \times 10^{-27} \mathrm{~kg}_{\mathrm{p}}$
molar gas constant	$N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
the Avogadro constant	$k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
the Boltzmann constant	$G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
gravitational constant	$g=9.81 \mathrm{~m} \mathrm{~s}$
-2	
acceleration of free fall on	
the Earth's surface	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
electron volt	

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s \quad$ for a constant force
$F=k x \quad$ (spring constant k)

Simple harmonic motion

Displacement $\quad x=\mathrm{A} \cos \omega t$

Sound

Sound intensity level/dB $\quad=10 \lg _{10} \frac{I}{I_{0}}$

Waves
Two-source interference

$$
\lambda=\frac{a y}{d}
$$

Thermal physics

Average kinetic energy of a molecule
$\frac{1}{2} m\left\langle c^{2}\right\rangle=\frac{3}{2} k T$
Kinetic theory
$p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle$
Thermal energy
$\mathrm{Q}=m c \Delta \theta$

Capacitors

Capacitors in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Capacitors in parallel
$C=C_{1}+C_{2}+C_{3}$
Time constant
$\tau=R C$

Light
Lens formula

Magnification

$$
\begin{aligned}
& \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& m=\frac{v}{u}
\end{aligned}
$$

Electricity

Terminal potential difference
Potential divider

$$
V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}
$$

Particles and photons

Radioactive decay

Half-life
de Broglie equation

$$
\lambda=\frac{h}{p}
$$

The nucleus
Nuclear radius

$$
r=r_{0} A^{\frac{1}{3}}
$$

