

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2014

Physics

Assessment Unit AS 2 assessing Module 2: Waves, Photons and Medical Physics

[AY121]

WEDNESDAY 22 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Answer **all ten** questions. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75.

Quality of written communication will be assessed in Question **3**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

Ce	ntre	Number
71		

Candidate Number

	Y121
•	A

use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Total Marks		

For Examiner's

8593.05**R**

A monochromatic ray of light is incident on face A of a triangular glass Examiner Only prism. Fig. 1.1 shows the path of the ray incident on the prism, through Marks Remark the prism and back into the air. "Normals" have been included and are labelled N. prism face A prism face B Ν. Ν monochromatic ray σ Fig. 1.1 (a) (i) What does "monochromatic" mean? _____ [1] (ii) Calculate the angle marked σ if the refracted angle (labelled r) is 26.9° and the refractive index of the glass is 1.54. σ = ____ ° [3]

(a)	(i)	In the space below, draw a labelled sketch of the apparatus yo would use to perform an experiment to obtain the raw data from which to determine the value of the focal length of a converging lens.	u I	Examin Marks	er Only Remark
			[2]		
	(ii)	Using the apparatus sketched in (a)(i) , outline the procedure yo would follow to obtain reliable data.	u 		
(b)			[2]		
(0)	obje Cal	culate the focal length of the converging lens.			
	Foc	al length =	[4]		

Where appropriate in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

3 Fig. 3.1 shows a photograph of the screen of a liquid crystal display (LCD) with a pair of sunglasses between the screen and camera. Fig. 3.2 is a photograph of the same scene as Fig 3.1 under identical circumstances except that the sunglasses have been rotated through 90°.

Fig. 3.1

Explain the difference in the view through the sunglasses in **Figs. 3.1** and **3.2**. In your answer you should comment on the nature of the light emitted from the LCD and the nature of the lenses in the sunglasses.

	[6]
	[0]
	101
ality of written communication	[2]

Examiner Only <u>Marks</u> Remark

(b) As the microphone moves along the detection line, the CRO display Examiner Only Marks Remark rises and falls periodically. (i) Position P represents the point, on the detection line, equidistant from the loudspeakers, see Fig. 4.1. Comment on the loudness of the sound detected by the microphone and explain your answer. [2] (ii) What variation would a person detect if they move along the detection line? _____ [1] (iii) Location Q is the closest point to location P at which the waves arrive from $\rm S^{}_1$ and $\rm S^{}_2$ with a phase difference of 180°. The sound waves have a frequency of 868 Hz and a velocity of $330 \,\mathrm{m\,s^{-1}}$. Calculate how much further the sound has to travel from S₂ to location Q than the sound from S₁. Distance = _____ m [4]

The Data and Formulae Sheet gives Equation 5.1 for sound intensity Examiner Only Marks Rema level. Sound intensity level/dB = $10 \lg_{10} \frac{I}{I_0}$ Equation 5.1 (a) I_0 in Equation 5.1 has a value of 1.0×10^{-12} W m⁻². What does I_0 represent? _____ [1] (b) At a distance of 10 m, the sound intensity level of a jet engine is 140 dB. (i) Calculate the intensity of sound energy from the engine at a distance of 10 m. Intensity = $_$ W m⁻² [2] (ii) At a distance of 2 km from the engine the intensity has fallen to $\frac{1}{4 \times 10^4}$ of the value at a distance of 10 m. Calculate the sound intensity level 2 km from the engine. Sound intensity level = _____ dB [2]

BLANK PAGE

(Questions continue overleaf)

6 Fig. 6.1 illustrates a loudspeaker being sounded over the open end of a 50 cm long resonance tube which is free to move vertically within a tall beaker of water. For a range of sound frequencies, resonance tube length data from the apparatus in **Fig. 6.1** is required to determine the speed of sound in air.

Fig. 6.1

(a) Describe how this apparatus is manipulated and identify the length to be measured to enable the speed of sound in air to be determined.

Examiner Only

Marks Remark

(b) Table 6.1 shows the relevant results obtained from the experiment using a resonance tube 50 cm long as shown in Fig. 6.1.

frequency/Hz	length/cm
2000	4.1
3000	2.8
4000	2.1
5000	1.7
6000	1.4

Table 6.1

(i) The lengths are measured using a metre rule and the frequency values are accurate to ±10 Hz. Explain why changing the frequency range would produce a more suitable set of results and suggest a better range.

		[3]

(ii) Explain how an accurate value for the speed of sound in air could be calculated from the data in **Table 6.1**. The data is relevant for the **first mode of vibration** at each frequency.

[2]

Examiner Only Marks Remark

(a) [escribe the nuclear magnetic resonance phenomenon	
(a)		
-		
-		
_		
_		
_		
_		
_		
-		
-	[3]	
D) (The component in the magnetic resonance system requires a current	
() C	of around 700 A to flow. Name this component and state the main	
() C	of around 700A to flow. Name this component and state the main lesign feature it incorporates to reduce power losses.	
() C C	of around 700 A to flow. Name this component and state the main lesign feature it incorporates to reduce power losses.	
	of around 700A to flow. Name this component and state the main lesign feature it incorporates to reduce power losses.	
	of around 700 A to flow. Name this component and state the main lesign feature it incorporates to reduce power losses.	
	bit component in the magnetic resonance system requires a current of around 700 A to flow. Name this component and state the main lesign feature it incorporates to reduce power losses.	
(c) E	Explain why each of the following must be removed before undergoing underg	
(c) E	Explain why each of the following must be removed before undergoing in MRI scan:	
(c) E	Explain why each of the following must be removed before undergoing in MRI scan:	
(c) E	[2] Explain why each of the following must be removed before undergoing in MRI scan: (1) A credit card: [1]	
(c) E	[2] Explain why each of the following must be removed before undergoing in MRI scan: [1]	
(c) E	i) A credit card: [1] [1] [1] [1] [1] [2] [2] [2] [3] [3] [4] [4] [5] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5	
(c) E	[2] [2] [2] [2] [2] [3] [3] [6] [6] [1] [6] [6] [1] [1]	
(c) E	in a credit card: [1] [1] [1] [1] [1] [1] [1]	

BLANK PAGE

(Questions continue overleaf)

Fig. 8.1 shows identical photons incident on a sheet of aluminium. The aluminium has a regular arrangement of lattice ions and contains TWO delocalised electrons, one just below the surface of the aluminium and the other at some distance below the surface . The work function of aluminium is 4.2 eV.	Examiner Only Marks Remark
aluminium sheet	
lattice ion	
delocalised electron	
Fig. 8.1	
(b) If each delocalised electron absorbs a photon, state which electron will be emitted with the greatest kinetic energy and explain why.	
[2]	

(c)	(i)	Calculate the minimum frequency of electromagnetic	; wave that	Examin	er Only
		could cause photoelectric emission.		Marks	Remark
		Frequency = Hz	[3]		
	(ii)	Hence, calculate the wavelength of the electromagne	etic wave.		
		State your answer in nanometres.			
		Wavelength = nm	[2]		
	/:::)	To which region of the electromagnetic enertrum de	as this ways		
	(111)	belong?	es uns wave		
		belong			
		Region =	[1]		

BLANK PAGE

(Questions continue overleaf)

(b) Electron diffraction is used to determine the separation of molecules within a sample. (Molecular separation is analogous to aperture size in conventional diffraction.) One such experiment involves accelerating electrons using a voltage V to a variety of kinetic energies and measuring the extent of diffraction that results. The conversion chart in Fig. 10.1 allows the accelerating voltage required to produce electrons with a particular velocity to be found and vice versa.

 7000000
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

60

V/V

Fig. 10.1

80

100

120

[4]

THIS IS THE END OF THE QUESTION PAPER

 $v/m s^{-1}$

2000000

1000000

0 **+** 0

20

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (Advanced Subsidiary) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
elementary charge	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant	$h = 6.63 \times 10^{-34} \text{ J s}$
mass of electron	$m_{\rm e}$ = 9.11 × 10 ⁻³¹ kg
mass of proton	$m_{ m p}$ = 1.67 $ imes$ 10 ⁻²⁷ kg
acceleration of free fall on the Earth's surface	<i>g</i> = 9.81 m s ⁻²
electron volt	1 eV = 1.60 × 10 ^{−19} J

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

	Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force
	Hooke's Law	F = kx (spring constant k)
Sound		
	Sound intensity level/dB	= 10 $\lg_{10} \frac{I}{I_0}$
Waves		0
	Two-source interference	$\lambda = \frac{ay}{d}$
Light		
	Lens formula	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$
	Magnification	$m = \frac{V}{U}$
Electricity	/	
	Terminal potential difference	V = E - Ir (e.m.f. <i>E</i> ; Internal Resistance <i>r</i>)
	Potential divider	$V_{\rm out} = \frac{R_1 V_{\rm in}}{R_1 + R_2}$
Particles	and photons	
	de Broglie equation	$\lambda = \frac{h}{p}$