

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2013

Physics

Assessment Unit AS 1 assessing Module 1: Forces, Energy and Electricity

[AY111]

THURSDAY 13 JUNE, AFTERNOON

71

Candidate Number

¥111	
AY	

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Answer **all** questions. Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75. Quality of written communication will be assessed in Question **5**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question. Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

8199

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
6			
7			
8			
9			
Total Marks			

(iii) Determine the direction, relative to the 70 N vector, in which the resultant vector acts.

Direction = _____°

(c) A displacement vector D has magnitude and direction 64 km, 38° east of north as shown in **Fig. 1.2**. Find the components of vector D in the east and north directions.

North = _____ km

[2]

Examiner Only Marks Remark

[2]

2 Figs. 2.1 and 2.2 represent the data for the projectile motion of a ball thrown from a high point above the ground on Planet X. Fig. 2.1 is a graph of the variation of the ball's vertical displacement with time. Fig. 2.2 is a graph of the variation of the same ball's vertical velocity with time.

Fig. 2.1

Fig. 2.2

 $\label{eq:Acceleration} \text{Acceleration} = \underline{\qquad} \text{m}\,\text{s}^{-2}$

(ii) Show that the vertical displacement of the ball after the 6s monitoring period determined from the velocity–time graph is consistent, to $\pm 30\%$, with the value obtained from the vertical displacement–time graph.

[5]

[3]

[Turn over

Marks Remar ball's projectile motion. The ball had a horizontal component of velocity of 0.4 m s⁻¹ at the instant the six second monitoring period began. Complete the displacement-time graph of Fig. 2.3 to show how (i) the horizontal displacement of the ball varies with time up to six seconds. Add appropriate values to the vertical axis. Horizontal displacement/m 0.0 2.0 3.0 4.0 5.0 6.0 7.0 1.0 Time/s [2] Fig. 2.3 (ii) Complete Fig. 2.4 by sketching the best-fit line to show the variation in the horizontal velocity with time. Add appropriate values to the vertical axis. Horizontal velocity/ms⁻¹ 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Time/s [1] Fig. 2.4

(b) This part of the question considers the horizontal component of the

Examiner Only

6 www.StudentBounty.com Homework Help & Pastpapers

BLANK PAGE

(Questions continue overleaf)

(a) (i) Define the term work. 3

9 www.StudentBounty.com Homework Help & Pastpapers

(b) A skier of mass 78 kg is **stationary** at the top of a 34 m long slope. Fig. 3.2 illustrates the situation. Skier 34m 19.5m 19.5m

Fig. 3.2

Calculate the velocity attained by the skier during the 34 m descent down the slope if 10% of the skier's energy is used up in overcoming friction.

Velocity = $_$ m s⁻¹

[3]

11 www.StudentBounty.com Homework Help & Pastpapers

20										
20										
15	-									
10			λ							
EZ 5										
Moment/Nm 0 c										
Ъ М ₋₅	0-50-	-100-	150 20	0-250-	300 Angl	350 le/°				
-10										
-15										
-20										
20		_								
		E.	ig. 4.2							
	varies as s									
moment	varies as s									
moment	varies as s									
moment	varies as s							s from		
moment v 0° to 360	varies as s	shown	in Fig.	4.2 as t	he an	gle inc	crease	s from	[4]	
moment v 0° to 360	varies as s °.	of the	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	
) If the actuation the size of	varies as s	of the	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	
) If the actuation the size of	varies as s °. ual length	of the	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	
) If the actuation the size of	varies as s °. ual length	of the	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	
) If the actuation the size of	varies as s °. ual length	of the	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	
) If the actuation the size of	varies as s °. ual length	of the	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	
) If the acture the size of rotation, f	varies as s °. ual length	of the if it rer 180°.	crank is	4.2 as t	he an	gle inc	.1), cal	s from	 [4]	

Where possible in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

Examiner Only

Marks Remark

- **5** Describe an experiment to determine the Young modulus of copper. Assume the copper is in the form of a thin wire and that you have access to equipment typically found in school physics laboratories.
 - (a) (i) Diagram of apparatus

	(iii) Safety precaution:	Examine	
		Marks	Remark
	[6]		
(b)	Analysis of results to determine the Young modulus.		
(6)	Analysis of results to determine the roung modulus.		
	[2]		
0			
Qua	ality of written communication [2]		

[Turn over

- 8 Resistor R_m , in the circuit shown in **Fig. 8.1**, is a length of manganin wire and the current flowing from the cell is 425 mA.
 - 425mA 1.64V 3.17Ω 2.69Ω
 - Fig. 8.1
 - (i) Show that the voltage across $\rm R_{m}$ is 0.50 V.

(ii) Determine the resistance of R_m .

 $R_m = _ __ \Omega$

[2] [3]

(iii) The manganin wire used to	he manganin wire used to form R _m is 2.35 m long and 0.846 mm in iameter. Determine the resistivity of manganin.			er Only Remark
	solutivity of mangamin.		Marks	
Resistivity =	Ω m	[3]		
, <u> </u>		[]		

9 Fig. 9.1 is the circuit diagram for a potential divider that incorporates a thermistor and a variable resistor initially fixed at 3180Ω .

Fig. 9.1

(a) The thermistor's resistance at 20 °C is 2860Ω and at 100 °C is 199Ω . Explain why the resistance of the thermistor varies with temperature in the manner that it does.

[2]

- (b) This potential divider circuit is to be used to control the temperature in an incubator. A heater will switch on when the potential difference (p.d.) across the thermistor is 6.0 V.
 - (i) Show that the thermistor resistance that produces a p.d. of 6.0V across the thermistor is 2400 Ω (to 2 sig. figs).

(ii) The heater element is part of a heating circuit that has to be Examiner Only Marks Remark placed in parallel with the thermistor. If the heating element has a resistance of 1600 Ω , calculate the new resistance to which the variable resistor must be adjusted if the heater's switch-on voltage is to remain at 6.0 V. Resistance = $_$ Ω [3] THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (AS) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum	$c=3.00 imes10^8~\mathrm{m~s^{-1}}$
elementary charge	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant	$h=6.63 imes10^{-34}~{ m J~s}$
mass of electron	$m_{ m e} = 9.11 imes 10^{-31} { m kg}$
mass of proton	$m_{ m p}=$ 1.67 $ imes$ 10 ⁻²⁷ kg
acceleration of free fall on the Earth's surface	$g = 9.81 \text{ m s}^{-2}$
electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

	Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force
	Hooke's Law	F = kx (spring constant k)
Sound		
Waves	Sound intensity level/dB	$= 10 \lg_{10} \frac{I}{I_0}$
	Two-source interference	$\lambda = \frac{ay}{d}$
Light		4 4 4
	Lens formula	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$
	Magnification	$m = \frac{v}{u}$
Electricit	ty .	
	Terminal potential difference	V = E - Ir (e.m.f. <i>E</i> ; Internal Resistance <i>r</i>)
	Potential divider	$V_{\rm out} = \frac{R_1 V_{\rm in}}{R_1 + R_2}$
Particles	and photons	
	de Broglie equation	$\lambda = \frac{h}{\rho}$

www.StudentBounty.com Homework Help & Pastpapers