Rewarding Learning

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2013

Physics

Assessment Unit AS 1
 assessing
 Module 1: Forces, Energy and Electricity

[AY111]
THURSDAY 13 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in Question 5.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	
Marks	

Candidate Number
\qquad

1 The physical quantity power may be defined as:
the rate of doing work or the rate of energy transfer.
(a) Use the definition to explain whether power is a vector or scalar quantity.
\qquad
\qquad
(b) A particle P is acted on by two perpendicular forces as shown in Fig. 1.1.

Fig. 1.1 is not drawn to scale.
(i) On Fig. 1.1 draw the resultant of these two forces.

Fig. 1.1
(ii) Determine, by calculation or scale drawing, the magnitude of the resultant vector acting on particle P.
\qquad

(iii) Determine the direction, relative to the 70 N vector, in which the resultant vector acts.

Direction $=$ \qquad。
(c) A displacement vector D has magnitude and direction $64 \mathrm{~km}, 38^{\circ}$ east of north as shown in Fig. 1.2. Find the components of vector D in the east and north directions.

Fig. 1.2

East $=$ \qquad km

North $=$ \qquad km

2 Figs. 2.1 and 2.2 represent the data for the projectile motion of a ball thrown from a high point above the ground on Planet X . Fig. 2.1 is a graph of the variation of the ball's vertical displacement with time. Fig. 2.2 is a graph of the variation of the same ball's vertical velocity with time.

Fig. 2.1

Fig. 2.2
(a) (i) Calculate the acceleration due to gravity on Planet X .

Acceleration $=$ \qquad ms^{-2}
(ii) Show that the vertical displacement of the ball after the 6 s monitoring period determined from the velocity-time graph is consistent, to $\pm 30 \%$, with the value obtained from the vertical displacement-time graph.
(b) This part of the question considers the horizontal component of the ball's projectile motion.

The ball had a horizontal component of velocity of $0.4 \mathrm{~ms}^{-1}$ at the instant the six second monitoring period began.
(i) Complete the displacement-time graph of Fig. 2.3 to show how the horizontal displacement of the ball varies with time up to six seconds. Add appropriate values to the vertical axis.

Fig. 2.3
(ii) Complete Fig. 2.4 by sketching the best-fit line to show the
(ii) Complete Fig. 2.4 by sketching the best-fit line to show the
variation in the horizontal velocity with time. Add appropriate values to the vertical axis.

Fig. 2.4

BLANK PAGE

(Questions continue overleaf)

3 (a) (i) Define the term work.
\qquad
\qquad

A rope exerts a force of 240 N on a box of mass 6 kg to move it at a steady speed along the ground. The rope acts at an angle of 28° to the vertical in moving the box a distance of 36 m from Position 1 to Position 2 as shown in Fig. 3.1.

Fig. 3.1
(ii) Calculate the value of the frictional force between the box and the ground.

Frictional force $=$ \qquad N
(iii) Calculate the work done in moving the box from Position 1 to Position 2.
\qquad J
(b) A skier of mass 78 kg is stationary at the top of a 34 m long slope.

Fig. 3.2 illustrates the situation.

Fig. 3.2

Calculate the velocity attained by the skier during the 34 m descent down the slope if 10% of the skier's energy is used up in overcoming friction.

Velocity $=$ \qquad ms^{-1}

4 (a) Define the moment of a force about a point.
\qquad
\qquad
(b) Fig. 4.1 represents the main features of a bicycle pedal. The force F exerted by the rider acts vertically down onto the footpad and a moment is exerted on the axle via the crank.

Fig. 4.1
(i) By drawing any suitable construction lines on Fig. 4.1, carefully indicate the distance that should be measured in order to calculate the moment of the force about the axle. Label this distance \mathbf{x}.

The graph in Fig. 4.2 shows how the moment produced varies for one complete rotation of the pedal.

Fig. 4.2
(ii) Identify the position of the crank for angle 0° and explain why the moment varies as shown in Fig. 4.2 as the angle increases from 0° to 360°.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) If the actual length of the crank is 22 cm (see Fig. 4.1), calculate the size of force F if it remains constant during the first half of the rotation, from 0° to 180°.
\qquad N

Where possible in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

5 Describe an experiment to determine the Young modulus of copper.
Assume the copper is in the form of a thin wire and that you have access to equipment typically found in school physics laboratories.
(a) (i) Diagram of apparatus
(ii) Procedure (include measurements to be taken and recorded):
\qquad
(iii) Safety precaution: \qquad
(b) Analysis of results to determine the Young modulus.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6 To make a mug of coffee 400 g of water was boiled using an electric kettle. This required 4.11×10^{21} electrons to flow past a point in the electric wires. The kettle is connected to a standard 230 V supply (mains) and is switched on for 126 s .
(i) Show that the average current flowing during the time the kettle is switched on is 5.22 A .
(ii) Determine the power rating of the kettle.

Power = \qquad kW
(iii) Determine the electrical energy transferred during the 126s of the heating by the kettle.
\qquad J

Pow

7 Determining the internal resistance r of a cell requires a circuit to be set up that enables quantities to be measured that when analysed allow the internal resistance to be obtained.
(i) Complete the circuit diagram, in Fig. 7.1, which will enable you to take readings from which you can determine the value of r.

Fig. 7.1
(ii) On Fig. 7.2 indicate the quantities to be used to plot a graph from which r can be determined. Label the axes, on the lines provided, and sketch the shape of graph expected.

Fig. 7.2
(iii) Explain how the value of the internal resistance of the cell is obtained from your graph.
\qquad
\qquad
\qquad

8 Resistor R_{m}, in the circuit shown in Fig. 8.1, is a length of manganin wire and the current flowing from the cell is 425 mA .

Fig. 8.1
(i) Show that the voltage across R_{m} is 0.50 V .
(ii) Determine the resistance of R_{m}.
\qquad

$R_{m}=$ Ω
(iii) The manganin wire used to form R_{m} is 2.35 m long and 0.846 mm in diameter. Determine the resistivity of manganin.

Resistivity = \qquad $\Omega \mathrm{m}$
$9 \quad$ Fig. 9.1 is the circuit diagram for a potential divider that incorporates a thermistor and a variable resistor initially fixed at 3180Ω.

Fig. 9.1
(a) The thermistor's resistance at $20^{\circ} \mathrm{C}$ is 2860Ω and at $100^{\circ} \mathrm{C}$ is 199Ω. Explain why the resistance of the thermistor varies with temperature in the manner that it does.
\qquad
\qquad
\qquad
\qquad
(b) This potential divider circuit is to be used to control the temperature in an incubator. A heater will switch on when the potential difference (p.d.) across the thermistor is 6.0 V .
(i) Show that the thermistor resistance that produces a p.d. of 6.0 V across the thermistor is 2400Ω (to 2 sig. figs).
(ii) The heater element is part of a heating circuit that has to be placed in parallel with the thermistor. If the heating element has a

Resistance $=$ \qquad Ω

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified

GCE (AS) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound intensity level/dB
$=10 \lg _{10} \frac{I}{I_{0}}$
Waves
Two-source interference
$\lambda=\frac{a y}{d}$
Light
Lens formula
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Magnification
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-I r \quad$ (e.m.f. E; Internal Resistance r) $V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation
$\lambda=\frac{h}{p}$

