Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education January 2013

Physics

[AY111]
FRIDAY 11 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 5(i) and (ii).
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total Marks	

Candidate Number
\qquad

Assessment Unit AS 1
 assessing
 Module 1: Forces, Energy and Electricity

1 (a) All physical quantities consist of a magnitude and a unit. Express each of the physical quantities given in Table 1.1 using the alternative unit indicated. The first has been completed as an example.

Table 1.1

	Quantity	Magnitude	Alternative Unit
e.g.	2.42 m	242 or 2.42×10^{2}	cm
(i)	$863 \mu \mathrm{~F}$		F
(ii)	$7.34 \times 10^{5} \mathrm{~V}$		kV
(iii)	$4.82 \times 10^{-7} \mathrm{MJ}$		mJ

(b) Complete Table 1.2 by adding the name of the base quantity or the name of the base unit as appropriate.

Table 1.2

	Base Quantity	Base Unit
(i)	Temperature	
(ii)		mole
(iii)	Electric current	

(c) A helical spring has a mass m attached to one end. This produces a force F in the spring. The mass is then displaced and released causing it to oscillate. Equation 1.1 represents the relationship for the periodic time T of a mass-spring system.

$$
T=2 \pi \sqrt{\frac{m X}{F}} \quad \text { Equation } 1.1
$$

Determine the base units of the term x.

Base units of $x=$

2 A ball bearing is propelled up a 3.00 m long frictionless ramp. It is released with an initial velocity of $3.60 \mathrm{~ms}^{-1}$ at a point 1.40 m from the foot of the

Fig. 2.1
(a) (i) Show that the deceleration of the ball bearing is $5.40 \mathrm{~ms}^{-2}$.
(ii) Calculate the distance of the ball bearing from the foot of the ramp after 1.60 s .
\qquad m
(b) On the axes of Fig. 2.2, sketch the velocity-time graph for the motion of the ball bearing during the 1.60 s described in part (a).

Fig. 2.2

3 A block of wood of mass 0.450 kg sits on a table. It experiences a force of 4.00 N acting horizontally in one direction and another of 6.00 N also acting horizontally, but in a perpendicular direction to the 4.00 N force as shown in Fig. 3.1.

Fig. 3.1
(a) (i) Determine the magnitude of the resultant of the two forces acting on the wooden block.

Resultant $=$ \qquad N
(ii) Hence, determine the expected acceleration of the wooden block.

Acceleration $=$ \qquad ms^{-2}
(b) The movement of the wooden block is investigated using a motion data logger. The velocity-time graph obtained from the data is shown in Fig. 3.2.

Fig. 3.2
(i) Determine the actual acceleration of the wooden block from the velocity-time graph in Fig. 3.2.

Acceleration $=$ \qquad ms^{-2}
(ii) Calculate the magnitude of the frictional force acting between the wooden block and the table during the movement of the wooden block.

Friction $=$ \qquad N

4 A town is built on the slopes of a river valley. A cable car connects the Low Town with the High Town. Fig. 4.1 represents the arrangement of the railway.

Fig. 4.1
(a) The electric motor, in the wheel house, operates with a power of 15.3 kW to cause the car to move up the track with a steady velocity of $0.44 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the tension in the cable.

Tension $=$ \qquad N
(b) Calculate the additional potential energy the fully laden car has in High Town compared to Low Town. The mass of the fully laden car is $5.50 \times 10^{3} \mathrm{~kg}$ and the track length is 163 m .

Additional potential energy $=$ \qquad J
?

BLANK PAGE

(Questions continue overleaf)

In parts (i) and (ii) of this question you will be tested on the quality of your written communication. Where possible you should answer in continuous prose.

5 The arrangement shown in Fig. 5.1 is used to determine the Young modulus of aluminium.

Fig. 5.1
(i) The sample of aluminium used is a wire of uniform cross-sectional
(i) area $1.66 \times 10^{-7} \mathrm{~m}^{2}$. Describe how this area may be determined experimentally.
\qquad
\qquad
\qquad
(ii) State all other values required in order to determine the Young
modulus and describe how, referring to the arrangement in Fig. 5.1, those values are obtained.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(iii) A series of values is obtained from the arrangement shown in Fig. 5.1 and the graph in Fig. 5.2 is drawn.

Fig. 5.2

Use data from Fig. 5.2 to determine the Young modulus of aluminium. Include the unit.

Young modulus $=$
Unit $=$

6 (a) State Hooke's Law.
\qquad
\qquad
\qquad
(b) A 3.40 m long wire extends 23.0 mm when a tensile force of 54.0 N is applied.
(i) Assuming the wire obeys Hooke's Law, calculate the stiffness constant (force constant) for the wire and give its unit.

Stiffness constant $=$
Unit $=$

The 54.0 N force is removed and a new force of 44.0 N is applied.
(ii) Calculate the total length of the wire when a tensile force of 44.0 N is applied. Give your answer to 3 significant figures.

Length $=$ \qquad m

7 (a) Of what are the following definitions:
(i) "the amount of energy converted to electrical energy when unit charge passes through."
is a definition of
(ii) "the rate of flow of charge."
is a definition of \qquad
(iii) "one joule of energy is dissipated per coulomb of charge." is a definition of
(b) An electric drill has a power rating of 1200 W and is connected to a 230 V supply. It is used continuously for 4.0 minutes.
(i) Calculate the size of the current flowing in the electric drill.

Current $=$ \qquad A
(ii) Calculate the charge flowing past a point in the electric circuit of the drill during the 4.0 minutes that it is switched on.

Charge $=$ \qquad C
(iii) Calculate the total amount of electrical energy used by the drill in this time.
\qquad kJ

8 (a) The current-voltage characteristic of a negative temperature coefficient (ntc) thermistor is shown in Fig. 8.1.

Fig. 8.1
(i) In the space below, draw a circuit diagram that would provide the data from which Fig. 8.1 could be produced. The symbol for the thermistor has been provided.
(ii) Explain how Fig. 8.1 identifies the thermistor as displaying non-ohmic behaviour.
\qquad

\qquad
(b) (i) On the axes of Fig. 8.2, sketch a graph to show the variation of the resistance of an ntc thermistor with temperature.
\square
Fig. 8.2
(ii) In terms of molecular theory, explain why the resistance of the ntc thermistor varies with temperature as you have sketched on Fig. 8.2.
\qquad

9 (a) Fig. 9.1 shows a simple d.c. circuit.

Fig. 9.1
(i) When the switch, S , is closed, deduce the current passing through each of the resistors.
$I_{A}=$ \qquad mA
$I_{B}=$ \qquad mA
(ii) Explain how the conservation of charge applies at junction J in

Fig. 9.1.
\qquad
\qquad
\qquad

B
(b) A battery of negligible internal resistance and e.m.f. E is connected across a circuit containing four equal resistors as shown in Fig. 9.2.

Fig. 9.2
(i) Find the total circuit resistance in terms of R.

Circuit resistance $=$
(ii) Determine the potential difference between X and Y in terms of the e.m.f. E.

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (AS) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound intensity level/dB
$=10 \lg _{10} \frac{I}{I_{0}}$
Waves
Two-source interference
$\lambda=\frac{a y}{d}$
Light
Lens formula
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Magnification
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-I r \quad$ (e.m.f. E; Internal Resistance r) $V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation
$\lambda=\frac{h}{p}$

