Rewarding Learning

ADVANCED
General Certificate of Education January 2013

Physics

Assessment Unit A2 1
assessing
Momentum, Thermal Physics, Circular Motion, Oscillations and Atomic and Nuclear Physics
[AY211]

WEDNESDAY 16 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all nine questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90 .
Quality of written communication will be assessed in Question 2(b).
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.
Question 9 contributes to the synoptic assessment required of the specification.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	
Marks	

8322.05R

Candidate Number
\qquad

If you need the values of physical constants to answer any questions in this paper they may be found in the Data and Formulae Sheet.

Answer all nine questions
1 (a) The maximum rotation of a DVD is 1530 revolutions per minute.
(i) Calculate its angular velocity in radians per second.

Angular velocity \qquad rads^{-1}
(ii) Calculate the period of revolution.

$$
\text { Period }=
$$

\qquad s
(iii) Calculate the linear speed of a point 4 cm from the centre.

$$
\text { Speed }=\ldots \mathrm{ms}^{-1}
$$

•
(b) A motorcycle approaches a hump-backed bridge of radius 124 m , as shown in Fig. 1.1. Calculate the maximum speed the motorcycle can have if both its wheels are to remain on the bridge.

Fig. 1.1

2 (a) State the units of specific heat capacity and define specific heat capacity.
\qquad
\qquad
\qquad
(b) Describe an electrical experiment to obtain a value for the specific heat capacity of water. Include a diagram, state readings to be taken and explain how these readings are used to determine the specific heat capacity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quality of witen
(c) A tank contains 160 kg of water at $65^{\circ} \mathrm{C}$.

Calculate the mass of water at $20^{\circ} \mathrm{C}$ that must be added in order that the final temperature of the water in the tank is $45^{\circ} \mathrm{C}$.
Assume the heat loss to the tank in this situation is negligible.

Mass of water = \qquad kg

3 (a) When considering the molecules of an ideal gas it is assumed that all collisions between the molecules of the gas, or between the molecules and the walls of the containing vessel, are perfectly elastic.

Explain the meaning of perfectly elastic in this context.
\qquad
\qquad
\qquad
(b) (i) A molecule of mass m and initial velocity $400 \mathrm{~ms}^{-1}$ collides with a stationary molecule of mass 4 m . Assume a perfectly elastic collision occurs. Use this information to construct two equations that will allow the velocity of both molecules, immediately after the collision to be determined.
Note: you are not expected to solve the equations.
(ii) The mathematical solution for the velocities after the collision results in two possible values for each mass.
mass m, velocity $400 \mathrm{~ms}^{-1}$ or $-240 \mathrm{~ms}^{-1}$
mass 4 m , velocity $0 \mathrm{~m} \mathrm{~s}^{-1}$ or $160 \mathrm{~m} \mathrm{~s}^{-1}$
For each of the two masses, choose which of the possible values is correct and explain why.

Velocity of molecule of mass $m=$ \qquad ms^{-1}

Velocity of molecule of mass $4 m=$ \qquad ms^{-1}

Explanation \qquad
\qquad
\qquad

BLANK PAGE

(Questions continue overleaf)

4 (a) Define simple harmonic motion.
\qquad
\qquad
\qquad
(b) A mass hanging from a vertical spring is pulled down and then released. It oscillates freely about an equilibrium position. At a time of 5.0 s after release, the acceleration of the mass is $49 \mathrm{~cm} \mathrm{~s}^{-2}$ and the mass is a distance 4.0 cm from the equilibrium position.
(i) (1) Calculate the natural frequency of the oscillation of this mass-spring system.

Natural frequency $=$ \qquad Hz
(2) Calculate the amplitude of the oscillation.

Amplitude $=$ \qquad cm
\qquad
(ii) This mass-spring system experiences light damping as it oscillates.
(1) Describe how the damping could be increased in this oscillating system.
\qquad
\qquad
\qquad
(2) Describe how increasing the damping will affect the oscillation of the mass-spring system.
\qquad
\qquad

5 Equation 5.1 is the relationship for nuclear radius.

$$
r=r_{0} A^{\frac{1}{3}} \quad \text { Equation } 5.1
$$

(a) (i) Complete Table 5.1, for the bromine isotope ${ }_{35}^{79} \mathrm{Br}$.

Table 5.1

Symbol from Equation 5.1	What the symbol represents in words	Value for a nucleus of bromine
A		
r_{0}		1.2 fm
r		

(ii) Calculate the volume of a nucleus of bromine.

Volume $=$ \qquad m^{3}
(iii) Show that the density of the bromine nucleus is $2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$
(b) Estimate by how many orders of magnitude the nuclear density of bromine is bigger than the atomic density of bromine and account for the difference.

Estimate $=$
\qquad
\qquad

6 (a) (i) Define half-life.
\qquad
\qquad
\qquad
(ii) The equation for radioactive decay is:

$$
A=A_{0} e^{-\lambda t} \quad \text { Equation } 6.1
$$

Name the quantities represented by the following symbols in Equation 6.1.

A \qquad
A_{0} \qquad
λ \qquad
(iii) Use your definition of half-life and Equation 6.1 to show that $t_{\frac{1}{2}}=\frac{0.693}{\lambda}$.
(b) (i) A sample of iodine-131 has a mass of $1.74 \times 10^{-9} \mathrm{~kg}$. One mole of iodine-131 has a mass of 0.131 kg . Show that the number of

Examiner Only
(ii) The half-life of radioactive iodine-131 is 8 days. Calculate the number of undecayed nuclei remaining after 21 days.

Number of nuclei $=$ \qquad
(iii) Calculate the activity of the sample, in Bq, after 21 days.

Activity = \qquad Bq

7 (a) Explain what is meant by the term binding energy of a nucleus.
\qquad
\qquad
(b) The mass of a carbon-14 $\left({ }_{6}^{14} \mathrm{C}\right)$ nucleus is 14.0032 u , the mass of a proton is 1.0073 u and the mass of a neutron is 1.0087 u .

Calculate the binding energy in MeV for carbon-14.

Binding energy = \qquad MeV

(c) The graph in Fig. 7.1 shows how mean binding energy per nucleon varies with atomic mass number.

Fig. 7.1
(i) Using a relevant value from Fig. 7.1 and your answer to (b) deduce which of the two isotopes, carbon-12 or carbon-14, will be more stable and explain your answer.
\qquad
\qquad
\qquad
\qquad
(ii) Explain how the data in Fig. 7.1 confirms the theoretical basis of nuclear fission and nuclear fusion.
\qquad
\qquad
\qquad
\qquad
\qquad nur

8 Equations 8.1 and 8.2 represent nuclear reactions that involve the collision of two reactants which results in reaction products and the release of energy.

$$
\begin{array}{ll}
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{37}^{90} \mathrm{Rb}+{ }_{55}^{143} \mathrm{Cs}+3{ }_{0}^{1} \mathrm{n}+202.5 \mathrm{MeV} & \text { Equation 8.1 } \\
{ }_{2}^{3} \mathrm{He}+{ }_{2}^{3} \mathrm{He} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{1} \mathrm{p}+12.9 \mathrm{MeV} & \text { Equation 8.2 }
\end{array}
$$

(a) (i) Explain why the three product neutrons in the reaction described by Equation 8.1 can pose a significant problem in a nuclear reactor and describe how the danger is removed.
\qquad
\qquad
\qquad
(ii) In the reaction described by Equation 8.1, comment on how the optimal energy of the reactant neutron is achieved.
\qquad
\qquad
(b) Name the process by which the reactants in Equation 8.2 are provided with the opportunity to collide and state how that process is achieved in the Sun.
\qquad
\qquad
\qquad
(c) The energy yield per nucleon for the reaction described by

Equation 8.1 is 0.86 MeV . How does this compare with the energy yield per nucleon for the reaction described by Equation 8.2?
\qquad
\qquad

This question contributes to the synoptic question requirement of the specification. In your answer you will be expected to bring together and apply principles and concepts from different areas of physics, and to use the skills of physics in the particular situation described.

X-ray Photon Emission

X-rays are a type of electromagnetic radiation which can be produced in quanta of energy called photons. X-ray photons can be emitted when electrons bombard a metal and knock out an electron from an inner shell of an atom, see Fig. 9.1a. An electron of higher energy from an outer shell can then fall into the inner shell and the energy lost by the falling electron becomes an emitted X-ray photon of energy characteristic of the metal, see Fig. 9.1b.

Fig. 9.1a

Fig. 9.1b
According to a theory, the energy of the X-ray photon is given by:

$$
E=M(Z-1)^{2} \quad \text { Equation } 9.1
$$

where E is the energy of the photons in keV, Z is the atomic number of the metal target and M is a constant.
(a) Table 9.1 gives the energy E of some X-ray photons emitted by various elements.

Table 9.1

Element	Atomic Number \mathbf{Z}	E/keV	$E^{\frac{1}{2} / \mathbf{k e V}^{\frac{1}{2}}}$
Titanium	22	4.41	
Iron	26	6.40	
Copper	29	8.06	
Zirconium	40	15.8	
Molybdenum	42	17.5	

(i) Using Equation 9.1 show $_{1}$ how the constant M can be determined by plotting the graph of $E^{\frac{1}{2}}$ against Z.
\qquad
\qquad
(ii) Calculate the values of $E^{\frac{1}{2}}$ corresponding to the values of E in

Table 9.1 and insert them in the fourth column of the table. Quote these values to three significant figures.
(iii) Select suitable scales for the $E^{\frac{1}{2}}$ and Z axes of the graph grid (Fig. 9.1). Plot the points on Fig. 9.1 and draw the best straight line through the points.

Fig. 9.1
(iv) Determine a numerical value for the constant M from your graph.
$M=$ \qquad keV
(b) (i) The constant M is a composite constant made up of several constants. It includes a constant known as the Rydberg Constant R, Planck's constant h, the speed of light in a vacuum c and the electronic charge e. M, when expressed in keV , can be shown to be given by:

$$
M=\frac{3 h c R}{4 \times 10^{3} e} \quad \text { Equation } 9.2
$$

Use your value of M from the graph and the information on the Data Sheet to determine a value for the Rydberg Constant R.

Rydberg Constant $R=$ \qquad m^{-1}
\qquad m

(ii) Calculate the percentage difference between the experimentally determined value for the Rydberg constant found in (b) (i) compared to the theoretical value of $1.10 \times 10^{7} \mathrm{~m}^{-1}$.

Percentage difference $=$ \qquad \%
(iii) The Rydberg unit of energy, Ry, is closely related to the Rydberg constant, R. Ry corresponds to the energy of the photon whose wavelength is the inverse of the Rydberg constant, R.
Calculate Ry.
$R y=$ \qquad J

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE Physics

Data and Formulae Sheet for A2 1 and A2 2

Values of constants

speed of light in a vacuum	$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
permittivity of a vacuum	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
	$\left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right)$
elementary charge	$e=1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
(unified) atomic mass unit	$1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$
mass of electron	$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
mass of proton	$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
molar gas constant	$N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
the Avogadro constant	$k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
the Boltzmann constant	$G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
gravitational constant	$g=9.81 \mathrm{~m} \mathrm{~s}$
acceleration of free fall on	
the Earth's surface	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
electron volt	

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s \quad$ for a constant force
$F=k x \quad$ (spring constant k)

Simple harmonic motion

Displacement $\quad x=\mathrm{A} \cos \omega t$

Sound

Sound intensity level/dB $\quad=10 \lg _{10} \frac{I}{I_{0}}$

Waves
Two-source interference

$$
\lambda=\frac{a y}{d}
$$

Thermal physics

Average kinetic energy of a molecule
$\frac{1}{2} m\left\langle c^{2}\right\rangle=\frac{3}{2} k T$
Kinetic theory
$p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle$
Thermal energy
$\mathrm{Q}=m c \Delta \theta$

Capacitors

Capacitors in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Capacitors in parallel
$C=C_{1}+C_{2}+C_{3}$
Time constant
$\tau=R C$

Light
Lens formula

Magnification

$$
\begin{aligned}
& \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& m=\frac{v}{u}
\end{aligned}
$$

Electricity

Terminal potential difference
Potential divider

$$
V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}
$$

Particles and photons

Radioactive decay

Half-life
de Broglie equation

$$
\lambda=\frac{h}{p}
$$

The nucleus
Nuclear radius

$$
r=r_{0} A^{\frac{1}{3}}
$$

