

ADVANCED SUBSIDIARY General Certificate of Education 2012

# Physics

| Assessment Unit AS 1                     |
|------------------------------------------|
| assessing                                |
| Module 1: Forces, Energy and Electricity |
| [AY111]                                  |

**MONDAY 11 JUNE, AFTERNOON** 



TIME

1 hour 30 minutes.

### INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Answer **all** questions. Write your answers in the spaces provided in this question paper.

### INFORMATION FOR CANDIDATES

The total mark for this paper is 75. Quality of written communication will be assessed in question **9(a)**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question. Your attention is drawn to the Data and Formulae Sheet which is inside this question paper. You may use an electronic calculator.

7456

| For Examiner's<br>use only |       |  |  |
|----------------------------|-------|--|--|
| Question<br>Number         | Marks |  |  |
| 1                          |       |  |  |
| 2                          |       |  |  |
| 3                          |       |  |  |
| 4                          |       |  |  |
| 5                          |       |  |  |
| 6                          |       |  |  |
| 7                          |       |  |  |
| 8                          |       |  |  |
| 9                          |       |  |  |
| 10                         |       |  |  |
| Total<br>Marks             |       |  |  |

Centre Number

71

Candidate Number

| same physical                                  | the magnitudes,<br>quantity for five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | quoted using a variety different machines.                                                                               | of prefixes, of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Examiner Only<br>Marks Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 1.1                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Physical quantity                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | Machine 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.73 mJ cs <sup>-1</sup>                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | Machine 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.8 MJ µs <sup>−1</sup>                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | Machine 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.6 µJ Ms <sup>-1</sup>                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | Machine 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.12 kJ ms <sup>-1</sup>                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | Machine 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 875 cJ ks <sup>-1</sup>                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a) (i) Name                                   | the physical qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | intity being measured.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Physic                                         | cal quantity =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Base                                           | units =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (b) Identify the<br>physical qu<br>unit and na | e machine, in <b>Tak</b><br>uantity being mea<br>ame the derived 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>ble 1.1</b> , with the <b>larges</b><br>asured. State that mag<br>S.I. unit of the quantity.                          | <b>t</b> magnitude of the<br>nitude in its S.I. base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Machine =<br>Magnitude<br>S.I. unit =          | =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | <ul> <li>(a) (i) Name</li> <li>(b) Identify the physical quarter of the second second</li></ul> | Machine 1   Machine 1   Machine 2   Machine 3   Machine 3   Machine 4   Machine 5   (a) (i) Name the physical quantity = | <b>Figure 11 is a non-magnetic strain of the second strain of the secon</b> | range physical quantity for five different machines.<br>Table 1.1<br>Table 1.1<br>Machine 1 2.73 mJ cs <sup>-1</sup><br>Machine 2 33.8 MJ µs <sup>-1</sup><br>Machine 3 44.6 µJ Ms <sup>-1</sup><br>Machine 4 7.12 kJ ms <sup>-1</sup><br>Machine 5 875 cJ ks <sup>-1</sup><br>(a) (i) Name the physical quantity being measured.<br>Physical quantity = [1]<br>(ii) Deduce the base units for the physical quantity being measured.<br>Base units = [2]<br>(b) Identify the machine, in Table 1.1, with the largest magnitude of the physical quantity being measured. State that magnitude in its S.I. base unit and name the derived S.I. unit of the quantity.<br>Machine = [3] |

**2** Fig. 2.1 is a velocity–time graph for the motion of a remote controlled car as it moves along a straight track.

Velocity/m s<sup>-1</sup>



3 www.StudentBounty.com Homework Help & Pastpapers [Turn over

3 The displacement, **s**, between Newtownards Airfield and Enniskillen Airfield may be taken to be 114 km and 250° measured clockwise from North. **Fig. 3.1** illustrates this situation.



Fig. 3.1

> www.StudentBounty.com Homework Help & Pastpapers



| (a) | Describe projectile motion.                                                                                                                             | Examiner On<br>Marks Rem |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     |                                                                                                                                                         |                          |
|     | [2]                                                                                                                                                     |                          |
| (b) | A projectile lands at the same vertical height from which it is launched,<br>136 m from the launch point, after reaching a maximum height of<br>51.0 m. |                          |
|     | (i) Show that the initial vertical component of velocity is $31.6 \mathrm{ms^{-1}}$ .                                                                   |                          |
|     |                                                                                                                                                         |                          |
|     | [2]                                                                                                                                                     |                          |
|     | (ii) Calculate the horizontal component of the velocity.                                                                                                |                          |
|     |                                                                                                                                                         |                          |
|     | Horizontal component = $m s^{-1}$ [2]                                                                                                                   |                          |
|     | (iii) Calculate the angle above the horizontal from which the projectile was launched.                                                                  |                          |
|     |                                                                                                                                                         |                          |
|     | Launch angle =º [2]                                                                                                                                     |                          |
|     |                                                                                                                                                         |                          |
|     |                                                                                                                                                         |                          |

|                          |                                                                                                                                                                                                   | Marks F |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| _                        | [1]                                                                                                                                                                                               |         |
| ( <b>b)</b> A<br>a<br>to | car of mass 1800 kg is travelling at a velocity of $36 \mathrm{ms^{-1}}$ . The driver pplies the brakes resulting in a retardation of $8 \mathrm{ms^{-2}}$ . The car comes prest in 4.5 s.        |         |
| (i                       | ) Calculate the average braking force exerted during the car's deceleration.                                                                                                                      |         |
|                          |                                                                                                                                                                                                   |         |
|                          | Force = kN [3]                                                                                                                                                                                    |         |
| (i                       | <ul> <li>i) In wet conditions the car comes to rest in 6.3 s, all other conditions<br/>being the same. Calculate the percentage reduction in the braking<br/>force compared to (b)(i).</li> </ul> |         |
|                          |                                                                                                                                                                                                   |         |
|                          |                                                                                                                                                                                                   |         |
|                          |                                                                                                                                                                                                   |         |
|                          | Percentage reduction in braking force = % [3]                                                                                                                                                     |         |
|                          |                                                                                                                                                                                                   |         |
|                          |                                                                                                                                                                                                   |         |

[Turn over

| 6 ( | (a)           | Define the terms power and efficiency.                                                                                                                                                                                                                         | Examiner Only<br>Marks Remark |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|     |               | Power:                                                                                                                                                                                                                                                         |                               |
|     |               | Efficiency:                                                                                                                                                                                                                                                    |                               |
|     |               | [2]                                                                                                                                                                                                                                                            |                               |
| (   | (b)           | <b>Fig. 6.1</b> illustrates a situation in which a drilling platform for use at sea is manoeuvred into position by a tugboat connected to the platform by a cable. <b>Fig. 6.1</b> is a plan (bird's eye) representation of the situation.                     |                               |
|     |               | Tugboat Direction<br>of travel                                                                                                                                                                                                                                 |                               |
|     | Dril<br>Plati | lling<br>fform Direction of travel                                                                                                                                                                                                                             |                               |
|     |               | <br>Fig. 6.1                                                                                                                                                                                                                                                   |                               |
|     |               | (i) Calculate the work done in moving the drilling platform 240 m in<br>the direction shown. The average tension T in the cable is<br>1.26 MN during the manoeuvre and the cable is at a 35.0° angle to<br>the direction in which the drilling platform moves. |                               |
|     |               | Work done = J [3]                                                                                                                                                                                                                                              |                               |
|     |               |                                                                                                                                                                                                                                                                |                               |

(ii) If the manoeuvre is completed in 7.00 minutes and the tugboat Examiner Only engine has an efficiency of 0.803 (80.3%), calculate the power of Marks Remark the tugboat's engine as it converts energy from its diesel fuel. [3] Power = \_\_\_\_\_

[Turn over

7 In an experiment to determine a value for the Young Modulus of a material the apparatus shown in **Fig. 7.1** was used.

Examiner Only Marks Remark



|        |         | Extension/mn | n    |
|--------|---------|--------------|------|
| LOau/N | Loading | Unloading    | Mean |
| 3.09   | 10.1    | 10.1         | 10.1 |
| 3.73   | 12.1    | 12.2         | 12.2 |
| 4.31   | 14.1    | 14.1         | 14.1 |
| 4.96   | 16.2    | 16.2         | 16.2 |
| 5.57   | 18.2    | 18.2         | 18.2 |

| ) In <b>Table 7.1</b> , explain why the mean extension under a load of 3.73N is recorded as 12.2mm when the calculated value is 12.15mm.                                                               |       | Examine<br>Marks | er C<br>Re |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|------------|
|                                                                                                                                                                                                        | _ [1] |                  |            |
| In <b>Table 7.1</b> , the extension for each load is measured twice.<br>Explain why it is good experimental practice to have multiple<br>readings.                                                     |       |                  |            |
|                                                                                                                                                                                                        | _ [1] |                  |            |
| i) Define strain.                                                                                                                                                                                      |       |                  |            |
|                                                                                                                                                                                                        | _ [1] |                  |            |
| v) Use the data in <b>Table 7.1</b> to determine a reliable value for the<br>Young Modulus of the material from which the wire is made. Ge<br>your answer to a suitable number of significant figures. | Sive  |                  |            |
|                                                                                                                                                                                                        |       |                  |            |
| Young Modulus = Pa                                                                                                                                                                                     | [3]   |                  |            |
|                                                                                                                                                                                                        |       |                  |            |
|                                                                                                                                                                                                        |       |                  |            |
|                                                                                                                                                                                                        |       |                  |            |
| 11                                                                                                                                                                                                     |       | Turr             |            |

| 2.9 <sup>.</sup><br>kett | 1 ×<br>le e        | 10 <sup>21</sup> electrons pass the same point in the heating element of a very minute.                                                                       |     | Examin<br>Marks | er Only<br>Remark |
|--------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-------------------|
| (a)                      | (i)                | Show that the total charge flowing past a point in the heating element, every minute, is 466 C.                                                               |     |                 |                   |
|                          | (ii)               | Hence, calculate the current flowing in the circuit                                                                                                           | [1] |                 |                   |
|                          | ()                 |                                                                                                                                                               |     |                 |                   |
|                          |                    | Current = A                                                                                                                                                   | [3] |                 |                   |
| (b)                      | 107<br>eve<br>kett | <sup>7</sup> kJ of electrical energy is converted to other forms of energy for<br>ery minute the kettle is switched on. Calculate the p.d. across the<br>tle. |     |                 |                   |
|                          | p.d                | . =V                                                                                                                                                          | [2] |                 |                   |
|                          |                    |                                                                                                                                                               |     |                 |                   |
|                          |                    |                                                                                                                                                               |     |                 |                   |
|                          |                    |                                                                                                                                                               |     |                 |                   |
|                          |                    |                                                                                                                                                               |     |                 |                   |
| 6                        |                    | 12                                                                                                                                                            |     |                 |                   |

www.StudentBounty.com Homework Help & Pastpapers

8

#### **BLANK PAGE**

(Questions continue overleaf)

Where appropriate in this question, you should answer in continuous prose. You will be assessed on the quality of your written communication.

Examiner Only Marks Remark

**9** Aluminium is a solid metal with a resistivity of  $2.82 \times 10^{-8} \Omega$  m at room temperature. Resistivity may be defined using **Equation 9.1**.

$$\rho = \frac{RA}{l}$$
 Equation 9.1

- (a) You are supplied with a reel of aluminium wire and the equipment found in a school Physics laboratory is available to you.
  - (i) Describe the procedure by which the quantity *R* can be determined.

(ii) Describe the procedure by which the quantity *A* can be determined.

\_\_\_\_\_ [2]

\_\_\_\_\_ [2]

[2]

Quality of written communication



Ω

16

R<sub>2</sub>=\_\_\_\_\_

- - 1  $R_2$  $R_1$  $V_{\rm out}$ Fig. 10.1 (a) (i) State two expressions for the current I flowing through the resistors in terms of the quantities labelled in Fig 10.1. Assume the voltmeter is a perfect measuring instrument and does not affect the circuit. [2] (ii) The potential divider circuit is to be used to provide a ratio of  $\frac{V_{\text{out}}}{V_{\text{in}}} = 0.625.$ If  $R_1 = 500 \Omega$  what size of resistance must be used for  $R_2$ ?

Examiner Only

Marks Remark

[2]

## 10 Fig. 10.1 shows a potential divider circuit containing two series resistors of fixed value. A battery provides the input voltage $V_{in}$ .

| V<sub>in</sub> | -| |-----| |-

**Fig 10.2** shows a current of 124 mA entering a junction where it splits three ways, into branches X, Y and Z. A current of 28 mA is measured in branch X and the resistance in branch Y is 3 times greater than that in branch Z.

Examiner Only

Marks Remark



www.StudentBounty.com Homework Help & Pastpapers

www.StudentBounty.com Homework Help & Pastpapers

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.