

Rewarding Learning

ADVANCED SUBSIDIARY (AS)

General Certificate of Education

 2012
Physics

Assessment Unit AS 3
 assessing
 Practical Techniques (Internal Assessment)
 Session 2

[AY132]

Candidate Number

MONDAY 14 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Turn to page 2 for further Instructions and Information.

Question Number	Marks	
	Examiner Check	
1		
2		
3		
4		
5		
Total Marks		

INSTRUCTIONS TO CANDIDATES

Answer all the questions in this booklet. Rough work and calculations must also be done in this booklet. Except where instructed, do not describe the apparatus or experimental procedures. The Teacher/Supervisor will tell you the order in which you are to answer the questions. One hour is to be spent on Section A and 30 minutes on Section B.
Section A consists of four short experimental tests. You will have access to the apparatus for 13 minutes for each of the tests. At the end of this 13-minute experimental period there is a 2-minute changeover to the area set aside for the next test. Any spare time before the start of the next test may be used to write up anything you have not yet completed.
At the end of your Section A work you will be told to move to the area set aside for Section B. Section B consists of one question in which you will analyse a set of experimental results.

INFORMATION FOR CANDIDATES

The total mark for this paper is 40 .
Section A and Section B carry 20 marks each.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each part question.
You may use an electronic calculator.

BLANK PAGE

(Questions start overleaf)

Section A

1 (a) (i) Use the metre rule and blocks of wood provided to measure the diameter of the table tennis ball. You are only expected to take one measurement at this stage.

Diameter $=$ \qquad cm
(ii) Now use the callipers to determine the diameter of the table tennis ball in three different planes; an example is shown in
Fig. 1.1. Then use your values to determine the mean diameter.

Diameter $1=$ \qquad cm

Diameter $2=$ \qquad cm

Diameter $3=$ \qquad cm

Mean diameter $=$ \qquad cm

Fig. 1.1
(b) Determine the mass of the table tennis ball. Place the table tennis ball into the small beaker to prevent it rolling off the scales.

$$
x^{2}
$$

Mass = \qquad g

$$
10
$$

2 You are provided with the circuit shown in Fig. 2.1, a third component labelled Q, a voltmeter, a milliammeter and additional connecting wires. Throughout this question, push and hold the switch closed as measurements are taken.
(a) The circuit shown in Fig. 2.1 has been set up for you.

Fig. 2.1
(i) Measure the current flowing in the circuit by using the milliammeter provided.

Current $=$ \qquad $m A$
(ii) Measure the potential difference (P.D.) across component P by using the voltmeter provided.

$$
\text { P.D. }=\square V
$$

(b) Adapt the circuit provided to set up the circuit as shown in Fig. 2.2. Take care to ensure the polarity of component Q is as shown.

Fig. 2.2
(i) Measure the current flowing through component Q by using the milliammeter provided.

Current into $Q=$ \qquad mA
(ii) Replace component Q into the circuit the opposite way round, i.e. "reverse biased".

Measure the current flowing through component Q after reversing component Q.

Current into $\mathrm{Q}=$ \qquad mA
(c) Adapt your circuit to allow you to measure the electromotive force
(e.m.f.) of the battery. Record the value of the e.m.f. below.
e.m.f. $=$ \qquad V
Current into $Q=\ldots$ m
. Curentin

3 (a) The pendulum arrangement as shown in Fig. 3.1a is provided. Adjust the length of the pendulum until the centre of mass of the bob is 0.350 m from the point of suspension. Use the 90° set square to assist, see Fig. 3.1a. The curved arrows on Fig. 3.1b represent a single oscillation, i.e. $A \rightarrow B \rightarrow A$.

Fig. 3.1a

You are to determine an accurate value for the periodic time of the simple pendulum of length 0.350 m . Periodic time is defined as the time taken for one oscillation and has the S.I. unit "second" (s).

Take readings that will allow an accurate value for the periodic time of the pendulum to be determined. Tabulate all readings taken in the space below.
\qquad s

4 You have been provided with an object of unknown weight and volume. This object has been attached to a length of thread. A retort stand, boss head and clamp have also been provided for your use. The spring balance suspended from the clamp has a systematic (zero) error. Small height adjustments can be made by opening and closing the clamp.
(a) Taking into account the systematic error determine the actual weight of the object. You should place the thread attached to the object to the lower end of the spring balance and allow it to hang freely. See Fig. 4.1.

Fig. 4.1

Weight $\left(W_{1}\right)=$ \qquad N
(b) (i) Determine the volume of the object attached to the thread by immersing it in the water in the graduated cylinder. In the space below record the values you require. You must show your calculation.
N.B. $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$ if your cylinder is graduated in millilitres (ml)

Volume (V) = \qquad cm^{3}
(ii) With the object still completely immersed in the water, determine the weight of the object when immersed in water.

Weight $\left(W_{2}\right)=$ \qquad N
(c) Use the values from (a) and (b) along with Equation 4.1 to calculate the value of R.

$$
R=\frac{W_{1}-W_{2}}{V} \quad \text { Equation } 4.1
$$

$R=$ \qquad Ncm^{-3}

Section B

5 Many governments and private companies are sponsoring research into the generation of electrical energy from wind.
(a) The electrical power output from a wind turbine for a variety of wind speeds is recorded in Table 5.1.

Table 5.1

Wind speed/ $\mathbf{m ~ s}^{-1}$	Electrical Power Output/kW			
	Trial 1	Trial 2	Trial 3	Average
5.32	46.9	45.7	47.2	46.6
7.55	134	132	137	
8.28	176	177	174	176
10.7	381	383	380	381
12.6	623	621	623	622
14.4	632	932	931	932

(i) To how many significant figures are all the values given in Table 5.1?

Number of significant figures $=$
(ii) Complete Table 5.1 by calculating the average electrical power
output for a wind speed of $7.55 \mathrm{~ms}^{-1}$ and inserting the value, to
the correct number of significant figures, into the table.

Complete Table 5.1 by calculating the average electrical power
output for a wind speed of $7.55 \mathrm{~ms}^{-1}$ and inserting the value, to
the correct number of significant figures, into the table.
Complete Table 5.1 by calculating the average electrical power
output for a wind speed of $7.55 \mathrm{~ms}^{-1}$ and inserting the value, to
the correct number of significant figures, into the table.
(iii) Consider the electrical power output values for wind speed $14.4 \mathrm{~ms}^{-1}$. State whether or not a mistake has been made in calculating the average and explain your answer.
\qquad
\qquad
\qquad

The relationship between electrical power output (P) and wind speed (v) is given by Equation 5.1

$$
P=k v^{n} \quad \text { Equation } 5.1
$$

where k and n are constants.
In Fig. 5.1, logarithms (log) of P and v are plotted. You do not need to know anything about logarithms in order to complete this question.

Fig. 5.1
(iv) Does this graph indicate that $\log P$ and $\log v$ are directly
proportional? Explain your answer.
\qquad
\qquad
(v) Constant n, in Equation 5.1, is equal to the gradient of this graph. Determine its value.
$n=$ \qquad
(vi) Constant k may be determined using Equation 5.2

$$
k=10^{c} \quad \text { Equation } 5.2
$$

where c is the intercept on the vertical axis of the graph in Fig. 5.1.

Calculate the magnitude of constant k.
$k=$ \qquad $\mathrm{kg} \mathrm{m}^{-1}$
(b) The electrical power output from the wind turbine also depends on the diameter of the turbine blades. Table 5.2 provides data on this relationship.

Table 5.2

Turbine	Blade Diameter \mathbf{d} / \mathbf{m}	Electrical Power P/kW
A	7.4	8.3
B	14.8	33.2
C	22.2	74.7
D	29.6	
E	37.0	208

(i) For turbines A and B :

1. Calculate the ratio $\frac{\text { Blade diameter turbine } B}{\text { Blade diameter turbine } A}$

Ratio $=$ \qquad
2. Calculate the ratio $\frac{\text { Electrical power turbine } B}{\text { Electrical power turbine } A}$
Ratio =
\qquad

Blade diameter and electrical power are related by Relationship 5.3

$$
P \propto d^{x} \quad \text { Relationship } 5.3
$$

where \boldsymbol{x} is a constant.
(ii) Use your answer to (b)(i) and/or by performing other calculations, establish a numerical value for \boldsymbol{x}.

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

\qquad
(iii) Calculate the electrical power P for turbine D.
\qquad kW
(c) The maximum harvestable power $P_{\text {max }}$ that can be extracted from the wind has a theoretical limit called the Betz Limit. Equation 5.4 gives the relationship for the maximum harvestable power

$$
P_{\max }=\frac{\pi}{8} \rho B_{c} Z \quad \text { Equation } 5.4
$$

where ρ is the air density, Z is a constant and B_{c} is the Betz coefficient.

Table 5.3 provides values for some of the quantities in Equation 5.4 along with the uncertainty in those values.

Table 5.3

Quantity	Value	Uncertainty	
		Absolute	Percentage
$P_{\max }$	656 kW	$\pm 26 \mathrm{~kW}$	
ρ	$1.29 \mathrm{~kg} \mathrm{~m}^{-3}$		$\pm 3 \%$
Z	$2.18 \times 10^{6} \mathrm{~m}^{5} \mathrm{~s}^{-3}$	$\pm 5 \times 10^{4} \mathrm{~m}^{5} \mathrm{~s}^{-3}$	$\pm 2 \%$

(i) Complete Table 5.3 by

1. calculating the percentage uncertainty for $P_{\max }$ and entering it in Table 5.3
2. calculating the absolute uncertainty for ρ and entering it in Table 5.3
(ii) Calculate the value for the Betz coefficient B_{c} and state its percentage uncertainty.
$B_{\mathrm{c}}=$ \qquad
Uncertainty $=$ \qquad \%

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2012

Physics

Assessment Unit AS 3
assessing
Practical Techniques
Sessions 1 and 2
[AY131] [AY132]
FRIDAY 11 MAY AND MONDAY 14 MAY

APPARATUS AND MATERIALS
 LIST

PHYSICS UNIT 3 (AS 3)
 APPARATUS AND MATERIALS REQUIRED FOR PRACTICAL ASSESSMENTS

CONFIDENTIAL

Information about the apparatus and materials required for the AS Practical Assessments must not be communicated to candidates sitting the examination.

This document gives preliminary information on the apparatus and materials required for the AS Practical Assessments. The Practical Assessments will be marked by teachers as part of the internal assessment requirements for the GCE Physics Specification.

Teachers will be given detailed instructions for setting up the experiment in the Confidential Instructions for Physics (Advanced Subsidiary) Practical Tests, to which they will have confidential access from March 2012.

Teachers will have confidential access to a copy of the experimental tests two working days (48 hours) before the start of the assessment.

The AS 3 Practical Techniques Assessment is a test of practical skills consisting of Section A and Section B. Section A is comprised of 4 short experimental tests (20 marks) and Section B consists of one question requiring the analysis of experimental results (20 marks). The duration of the assessment is 1 hour 30 minutes. Some of this time will be set aside for supervisors to re-set the apparatus ready for the next candidates. All candidates should attempt Section A of the AS 3 assessment first followed by Section B. Section A of the assessment should be run as a circus of experiments with candidates moving to the next experiment at the designated time. The assessment should be timed as follows:

Section A	Time
Q1 (Short practical test)	13 minutes
Changeover and practical write-up	2 minutes
Q2 (Short practical test)	13 minutes
Changeover and practical write-up	2 minutes
Q3 (Short practical test)	13 minutes
Changeover and practical write-up	2 minutes
Q4 (Short practical test)	13 minutes
Changeover and practical write-up	2 minutes
Section B	Time
Question on the analysis of experimental results	30 minutes

In Section A, at the end of each 13 minute period, candidates must stop using the apparatus. During each 2 minute changeover period candidates may write up anything they have not completed however they will not have access to the apparatus.

The apparatus in the following list will allow for one experiment to be set up for each of the short practical tests which make up questions 1-4. In other words, each set of apparatus (as listed on pages 4 and 5) will accommodate four candidates when doing part A as a circus of experiments.

The apparatus can be used for alternative sessions according to the following schedule:

Friday 11 May 2012 Physics AS 3A (AY131)

(Main Session) 9.15 a.m. - 10.45 a.m.
(First Alternative) 11.00 a.m. - 12.30 p.m.
(Second Alternative) 1.15 p.m. - 2.45 p.m.
(Third Alternative) 3.00 p.m. - 4.30 p.m.
Monday 14 May 2012 Physics AS 3B (AY132)
(Main Session) 9.15 a.m. - 10.45 a.m.
(First Alternative) 11.00 a.m. - 12.30 p.m.
(Second Alternative) 1.15 p.m. - 2.45 p.m.
(Third Alternative) 3.00 p.m. $\mathbf{- 4 . 3 0}$ p.m.

One set of apparatus for AS 3A (AY131) will therefore be sufficient for sixteen candidates on 11 May if the Main Session and all three alternatives are used. Similarly, one set of apparatus for AS 3B (AY132) will be sufficient for sixteen candidates on 14 May if the Main Session and all three Alternatives are used. A laboratory may contain one, two, three or more sets of apparatus. This means that four, eight, twelve or more candidates can be accommodated in the same session. When alternative sessions are used care must be taken to segregate candidates who have taken the examination from those who have still to sit the examination.

IMPORTANT NOTICE
Centres are urged to order items needed for the Physics Practical Tests from the suppliers as soon as possible.

Session 1

The following list of apparatus for Questions 1-4 is sufficient to equip one experimental station.

Question 1

1.1 Golf ball (new and R\&A and USGA approved) 1 X
1.2 Table tennis ball (new and ITTF approved) X
1.3 Vernier callipers (analogue, accurate to 0.01 cm) 1
1.4 Scales (electronic, accurate to 0.01 g) 1
1.5 Glass beaker (100 ml) 1
1.6 Wooden block (straight edges; bigger in size than 1.1 or 1.2) 2
Question 2
2.1 Cell (providing ~1.5 V) 1
2.2 Cell holder (suitable for cell) 1 1
2.3 Push-to-make switch (e.g. Philip Harris B8H30798) 1
2.44 mm sockets (single colour) 6
2.5 Component channels (boxes) 3
2.6 Diode (e.g. Rapid 47-3154) 1
2.775Ω resistor (1\% tolerance, 0.6 W, e.g. Rapid 62-2044) 1
2.8150Ω resistor (1\% tolerance, 0.6 W, e.g. Rapid 62-2058) 2
2.9330Ω resistor (1\% tolerance, 0.6 W, e.g. Rapid 62-2074) 1 2
2.104 mm leads (4 mm plug at each end) 92.11 Voltmeter (digital, range to $\sim 5 \mathrm{~V}$ in intervals of 0.01 V) 1116311191
2.12 Ammeter (digital, range to 100 mA in intervals of 0.1 mA) 1 1 1\checkmark
2.13 Masking tape

Question 3

3.1 Retort stand 1 1
3.2 Boss head 1 1
3.3 Clamp 1
3.4 Split cork 1
3.5 Pendulum bob 1
3.6 String/thread (~1 m)
3.7 Stopwatch/stopclock (accurate to 0.01 s) 11
3.8 Metre rule 1
3.9 Metre rule support (to hold metre rule vertically) 1
3.1090° set square 1
3.11 G-clamp 1
Question 4
4.1 Spring balance (range to 10 N in intervals of 0.1 N with zero adjustment facility) 1
4.2 Graduated cylinder ($200 \mathrm{~cm}^{3}$ in $2 \mathrm{~cm}^{3}$ intervals) 1 1
4.3 Slotted masses (50 g, diameter < 30 mm so as to fit inside graduated cylinder) 4 6
4.4 Thread (~ 0.5 m)
4.5 Retort stand 1 1
4.6 Boss head 1 1
4.7 Clamp 1
品 1\checkmark4.8 Tape (opaque and waterproof, e.g. insulating tape)

Question 5

Apart from the provision of a suitable writing area, no apparatus is required for this Data Analysis Question.

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2012

Physics

Assessment Unit AS 3
assessing
Practical Techniques (Internal Assessment)
Session 1 (pp 3-9) and 2 (10-16)
[AY131] [AY132]

FRIDAY 11 AND MONDAY 14 MAY

CONFIDENTIAL INSTRUCTIONS
 TO

 TEACHERS
CONFIDENTIAL INSTRUCTIONS FOR PHYSICS (ADVANCED SUBSIDIARY) PRACTICAL TECHNIQUES (INTERNAL ASSESSMENT)

Confidentiality

To maintain the integrity of the Assessment, no question papers or any material pertaining to the Assessment should be publicly released until after the final session of the second day.

Abstract

General The Internal Assessment will contain five compulsory questions, of which Section A is made up of four 15-minute experimental tests and Section B is a 30-minute question testing Data Analysis. The total time allowed is 1 hour 30 minutes. The order in which candidates are to take the questions in Section A is to be decided by the Supervisor. Candidates will have access to the apparatus in each experimental task for 13 minutes each, the final two minutes being reserved for adjustment of the apparatus by the Supervisor. During this 2 minute changeover period candidates may write-up anything they have not completed; however, they will not have access to the apparatus. At the end of Section A, candidates should be directed to an area set aside for Section B which consists of one question in which a set of experimental results will be analysed.

SESSION 1

Question 1

Principal Requirements

Golf ball
Vernier callipers
Scales (electronic, accurate to 0.01 g)
Glass beaker (100 ml)
Wooden blocks
Metre rule

Preparation

The supervisor must record the golf ball mass for each set of scales used as this will be required for marking purposes.
The supervisor must also ensure the mean diameter for each golf ball used is $4.23 \mathrm{~cm}-4.29 \mathrm{~cm}$.

Before Examination

Level the electronic scales and set to zero.
Close the vernier callipers.
Place the golf ball in the beaker and leave beside the scales.
Place the metre rule and blocks of wood alongside the other apparatus.

Action at changeover

Level the electronic scales and set to zero.
Close the vernier callipers.
Place the golf ball in the beaker and leave beside the scales.
Place the metre rule and blocks of wood alongside the other apparatus.
Information required by examiners
None.

SESSION 1

Question 2

Principal Requirements

Cell
Cell holder
Push-to-make switch
4 mm sockets
Component channels (boxes)
Diode
75Ω resistor
150Ω resistors
330Ω resistor
4 mm leads
Voltmeter
Milliammeter
Masking tape

Preparation

(a) Drill two holes into each component channel (at either end) and fit 4 mm sockets.
(b) Solder the 75Ω resistor into the channel and label it ' P '. Use masking tape to cover the resistor so that it cannot be seen.
(c) Solder the 330Ω resistor into the channel and label it ' R '. Use masking tape to cover the resistor so that it cannot be seen.
(d) Solder the diode to a 150Ω resistor so they are in series and solder both into the channel so that the diode anode is attached to the LH socket (viewed from the outside).
Solder a second 150Ω resistor in parallel with the diode and the first 150Ω resistor. Label this component channel ' Q '. Mark the LH socket '+' and use masking tape to cover the resistors and diode so that they cannot be seen. See Fig. 2.1.

Fig. 2.1

Testing

Ensure that the cell provides a voltage of $\sim 1.5 \mathrm{~V}$.
Check that with the switch, component ' P ' and component ' R ' connected to the cell in series, the current flowing is $\sim 3.7 \mathrm{~mA}$ and the p.d. across ' P ' is $\sim 0.27 \mathrm{~V}$.

Connect components ' P ', ' R ' and ' Q ' as shown in Fig. 2.2 and record the current flowing through ' Q '. Please note that this value will be required for marking purposes.

Reverse component ' Q ' and ensure that the current flowing through ' Q ' has decreased.

Fig. 2.2

Before Examination

Set up the circuit shown in Fig. 2.3.

Fig. 2.3
Leave component Q, the milliammeter, the voltmeter and five leads adjacent to the circuit.

SESSION 1

Action at changeover

Set up the circuit shown in Fig. 2.3.
Leave component Q, the milliammeter, the voltmeter and five leads adjacent to the circuit.

Information required by examiners
None.

SESSION 1

Question 3

Principal Requirements

Retort stand
Boss head
Clamp
Split cork
Pendulum bob
String/thread (~ 1 m)
Stopwatch/stopclock (accurate to 0.01 s)
Metre rule
Metre rule support
90° set square
G-clamp

Preparation

Clamp the retort stand to the bench.
Ensure there is minimal movement in the retort stand when the pendulum is swinging.
Ensure the edges of the cork around the split are clean.
Arrange the cork in the clamp so that it tapers down to allow the clamp to be opened slightly without the cork falling.

Before Examination

Adjust pendulum length to between 500 mm and 550 mm .
Zero the stopwatch/stopclock.
Leave the stopwatch/stopclock, set square and metre rule in holder adjacent to the pendulum.

Action at changeover

Adjust pendulum length to between 500 mm and 550 mm .
Zero the stopwatch/stopclock.
Leave the stopwatch/stopclock, set square and metre rule in the support adjacent to the pendulum.

Information required by examiners
None.

Question 4

Principal Requirements

Spring balance (range to 10 N)
Graduated cylinder ($200 \mathrm{~cm}^{3}$ in $2 \mathrm{~cm}^{3}$ intervals)
Slotted masses (50 g, diameter < 30 mm)
Thread (~ 0.5 m)
Retort stand
Boss head
Clamp
Tape (e.g. insulating tape)

Preparation

Stack the four 50 g masses and tape tightly together into a cylinder shape.
Ensure the masses are completely covered in tape.
Securely attach the thread to the mass cylinder, using more insulating tape, so that a loop exists see Fig. 3.1 below (to facilitate adding the cylinder to the spring balance).

Fig. 3.1

Before Examination

Setup the retort stand, boss head and clamp.
Adjust the spring balance so that it reads +0.5 N with no load (zero error).
Fill the graduated cylinder with water to the $94 \mathrm{~cm}^{3}$ mark.
Place the spring balance on the clamp.
Adjust the height of the clamp so that the mass when suspended from the spring balance will be immersed in the water in the graduated cylinder.
Leave the stack of four 50 g masses on the bench beside the other apparatus.

Action at changeover

Place the spring balance on the clamp.
Ensure the spring balance has a zero error of +0.5 N
Ensure the water level in the graduated cylinder is $94 \mathrm{~cm}^{3}$.
Leave the stack of four 50 g masses on the bench beside the other apparatus.

Information required by examiners

None.
7616.06

SESSION 1

Question 5

Apart from the provision of a suitable working area, no apparatus is required for this Data Analysis Question.

Information required by examiners
None.

SESSION 2

Question 1

Principal Requirements

Table tennis ball
Vernier callipers
Scales (electronic, accurate to 0.01 g)
Glass beaker (100 ml)
Wooden blocks
Metre rule

Preparation

The supervisor must record the table tennis ball mass for each set of scales used as this will be required for marking purposes.
The supervisor must also ensure that the mean diameter for each table tennis ball used is $3.97 \mathrm{~cm}-4.03 \mathrm{~cm}$.

Before Examination

Level the electronic scales and set to zero.
Close the vernier callipers.
Place the table tennis ball in the beaker and leave beside the scales.
Place the metre rule and blocks of wood alongside the other apparatus.

Action at changeover

Level the electronic scales and set to zero.
Close the vernier callipers.
Place the table tennis ball in the beaker and leave beside the scales.
Place the metre rule and blocks of wood alongside the other apparatus.

Information required by examiners

None.

Question 2

Principal Requirements

Cell
Cell holder
Push-to-make switch
4 mm sockets
Component channels (boxes)
Diode
75Ω resistor
150Ω resistor
330Ω resistors
4 mm leads
Voltmeter
Milliammeter
Masking tape

Preparation

(a) Drill two holes into each component channel (at either end) and fit 4 mm sockets.
(b) Solder the 75Ω resistor into the channel and label it ' P '. Use masking tape to cover the resistor so that it cannot be seen.
(c) Solder the 150Ω resistor into the channel and label it 'R'. Use masking tape to cover the resistor so that it cannot be seen.
(d) Solder the diode to a 330Ω resistor so they are in series and solder both into the channel so that the diode anode is attached to the LH socket (viewed from the outside). Solder a second 330Ω resistor in parallel with the diode and the first 330Ω resistor. Label this component channel 'Q'. Mark the LH socket '+' and use masking tape to cover the resistor and diode so that they cannot be seen. See Fig. 4.1.

Fig. 4.1

Testing

Ensure that the cell provides a voltage of $\sim 1.5 \mathrm{~V}$.
Check that with the switch, component ' P ' and component ' R ' connected to the cell in series, the current flowing is $\sim 6.7 \mathrm{~mA}$ and the p.d. across ' P ' is $\sim 0.5 \mathrm{~V}$.

Connect components ' P ', ' R ' and ' Q ' as shown in Fig. 4.2 and record the current flowing through ' Q '. Please note that this value will be required for marking purposes.

Reverse component ' Q ' and ensure that the current flowing through ' Q ' has decreased.

Fig. 4.2

Before Examination

Set up the circuit shown in Fig. 4.3.

Fig. 4.3

Leave component Q, the milliammeter, the voltmeter and five leads adjacent to the circuit.

SESSION 2

Action at changeover

Set up the circuit shown in Fig. 4.3.
Leave component Q, the milliammeter, the voltmeter and five leads adjacent to the circuit.

Information required by examiners
None.

Question 3

Principal Requirements

Retort stand
Boss head
Clamp
Split cork
Pendulum bob
String/ thread (~ 1 m)
Stopwatch/stopclock (accurate to 0.01 s)
Metre rule
Metre rule support
90° set square
G-clamp

Preparation

Clamp the retort stand to the bench.
Ensure there is minimal movement in the retort stand when the pendulum is swinging.
Ensure the edges of the cork around the split are clean.
Arrange the cork in the clamp so that it tapers down to allow the clamp to be opened slightly without the cork falling.

Before Examination

Adjust pendulum length to between 500 mm and 550 mm .
Zero the stopwatch/stopclock.
Leave the stopwatch/stopclock, set square and metre rule in holder adjacent to the pendulum.

Action at changeover

Adjust pendulum length to between 500 mm and 550 mm .
Zero the stopwatch/stopclock.
Leave the stopwatch/stopclock, set square and metre rule in the support adjacent to the pendulum.

Information required by examiners
None.

SESSION 2

Question 4

Principal Requirements

Spring balance (range to 10 N)
Graduated cylinder ($200 \mathrm{~cm}^{3}$ in $2 \mathrm{~cm}^{3}$ intervals)
Slotted masses (50 g, diameter < 30 mm)
Thread (~ 0.5 m)
Retort stand
Boss head
Clamp
Tape (e.g. insulating tape)

Preparation

Stack the six 50 g masses and tape tightly together into a cylinder shape.
Ensure the masses are completely covered in tape.
Securely attach the thread to the mass cylinder, using more insulating tape, so that a loop exists see Fig. 5.1 below (to facilitate adding the cylinder to the spring balance).

Fig. 5.1

Before Examination

Setup the retort stand, boss head and clamp.
Adjust the spring balance so that it reads +0.5 N with no load (zero error).
Fill the graduated cylinder with water to the $94 \mathrm{~cm}^{3}$ mark.
Place the spring balance on the clamp.
Adjust the height of the clamp so that the mass when suspended from the spring balance will be immersed in the water in the graduated cylinder.
Leave the stack of six 50 g masses on the bench beside the other apparatus.

Action at changeover

Place the spring balance on the clamp.
Ensure the spring balance has a zero error of +0.5 N .
Ensure the water level in the graduated cylinder is $94 \mathrm{~cm}^{3}$.
Leave the stack of six 50 g masses on the bench beside the other apparatus.

Information required by examiners

SESSION 2

Question 5

Apart from the provision of a suitable working area, no apparatus is required for this Data Analysis Question.

Information required by examiners
None.

