Rewarding Learning

ADVANCED SUBSIDIARY General Certificate of Education January 2012

Physics

Assessment Unit AS 2

assessing
Module 2: Waves, Photons and Medical Physics
[AY121]
FRIDAY 20 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 2.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	
Marks	

Candidate Number
\qquad

-

1 (a) (i) Waves may be categorised as either transverse or longitudinal.
Describe how to distinguish between these two categories.
\qquad
\qquad
\qquad
\qquad
(ii) Complete Table 1.1 below to indicate the category of the waves listed.

Table 1.1

Wave	transverse or longitudinal
microwaves	
waves on a string	
waves in a resonance tube	
surface water waves	

(b) Some waves may be polarised. Which category of wave may be polarised? Explain what is meant by polarisation.
\qquad
\qquad

2 Where appropriate in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.
(a) State Snell's Law of refraction.
\qquad
\qquad
\qquad
(b) Describe an experiment to verify Snell's Law.

In your description you should:
(i) draw a labelled diagram of the apparatus you intend to use.
(ii) describe how the apparatus is used to obtain measurements.
(iii) explain how the measurements are used to verify Snell's Law.
(i) Labelled diagram
(ii) Description of how the apparatus is used to obtain measurements.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Explanation of how the measurements are used to verify Snell's Law.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(c) A ray of light is incident on the surface of a clear liquid in a beaker shown in Fig. 2.1. The refractive index from air to the liquid is 1.38 .

Fig. 2.1

Calculate the angle of refraction in the liquid.

Angle of refraction $=$ \qquad ${ }^{\circ}$
megiodicincan

$$
0
$$

ex ele

3 (a) Fig. 3.1 shows an object, O, placed in front of a lens, L. The axis of the lens is included. The lens forms a real magnified image.

L

Fig. 3.1
(i) Name the type of lens that must be used.
\qquad
(ii) On Fig. 3.1 draw a ray diagram to show the formation of a real magnified image. Label both the image I and a principal focus, F, for the lens.
(b) A student has near point 1.8 m .
(i) What type of lens is needed to allow the student to focus objects 25 cm from the eye? Calculate its focal length.

Type of lens = \qquad
Focal length $=$ \qquad cm
(ii) Calculate the power of this lens and state its unit.

Lens power $=$ \qquad Unit \qquad
20tiopown

4 (a) State the principle of superposition.
(b) Fig. 4.1 shows two waves of different amplitudes and frequencies.

The wave with the smaller amplitude has three times the frequency of the wave with the larger amplitude.
(i) Using the principle of superposition sketch the resultant wave shape on Fig. 4.1.

Fig. 4.1

The frequency of the wave with larger amplitude is f_{0}.
(ii) What is the frequency of the resultant wave? Tick the correct answer from the responses below.
$\mathrm{f}_{0} \square$
$2 f_{0}$ \square $3 f_{0}$ \square
$4 f_{0}$ \square

5 Light from a single source is split in two by a double slit, as shown in Fig. 5.1, and the two beams overlap in the region beyond and illuminate a screen.

Fig. 5.1
(a) The two beams that emerge from S_{1} and S_{2} are said to be coherent.
(i) What is meant by coherent?
\qquad
\qquad
(ii) If, at certain points on the screen, the two waves show total destructive interference they must be coherent. What other two conditions must be met?

1. \qquad
2.

(b) (i) Use Fig. 5.1 to explain what is meant by path difference.
\qquad
\qquad
(ii) What will be observed on the screen at point \mathbf{Z}, equidistant from each slit? You may assume that the light emerging from S_{1} and S_{2} is in phase.
\qquad
(iii) In terms of the path difference, what condition must be met for total destructive interference to occur at point \mathbf{Y} ?
\qquad

6 The speed of sound in air may be measured by the resonance tube method.
(a) (i) Draw a labelled sketch of the apparatus to be used in this experiment.
(ii) Describe how the first position of resonance may be found.
\qquad
\qquad
\qquad
(b) In a resonance tube experiment a source of sound of unknown frequency is used and the frequency is measured using a cathode ray oscilloscope. Fig. 6.1 shows the trace obtained on the screen of the oscilloscope with the time base set at $0.5 \mathrm{mscm}^{-1}$.

Fig. 6.1
(i) Calculate the frequency of the sound source.

Frequency $=$ \qquad Hz
(ii) Taking the speed of sound in air to be $340 \mathrm{~m} \mathrm{~s}^{-1}$, use this frequency to calculate the length of air column at first resonance position.

Length of air column = \qquad m

7 X-rays have been used in medical diagnosis for over a century.
(a) (i) Describe briefly how an image of part of a patient is obtained using conventional x-ray imaging.
\qquad
\qquad
\qquad
(ii) More recently CT scans have become available. Explain how the equipment needed and the process for CT scans differs from conventional x-ray imaging.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A patient with a previous fracture has had a steel pin inserted. He returns for a check-up scan. Explain why a CT scan would be preferable to an MRI scan.
\qquad
\qquad
\qquad

8 (a) (i) What is meant by the work function of a metal?
\qquad
\qquad
\qquad
(ii) The longest wavelength of radiation which can cause photoelectric emission from a certain metal is 520 nm . Calculate the work function of this metal in electron volts.

Work function $=$ \qquad eV
(b) One type of sodium street lamp is rated at 160 W input power. It is 70% efficient in converting this energy to light in the form of a stream of photons each of mean energy $3.38 \times 10^{-19} \mathrm{~J}$.

Calculate the number of photons emitted per second by the lamp.

Photons emitted per second = \qquad s^{-1}

9 Fig. 9.1 is a simplified diagram of some of the energy levels of an isolated hydrogen atom. The diagram is not to scale.
\qquad
Energy/eV
-1.5 \qquad
-3.4 \qquad
-13.6 \qquad
Fig. 9.1
(a) (i) What does the term ground state mean?
\qquad
\qquad
(ii) What is the energy level value of the ground state of the hydrogen atom?
\qquad
(b) (i) Calculate the longest wavelength of the radiation emitted when an electron makes an appropriate transition between two of the levels shown.

Wavelength $=$ \qquad μm
(ii) On Fig. 9.1 show clearly, with an arrow between the appropriate levels, the direction of the electron movement for this transition to occur.

10 (a) With the aid of a labelled sketch describe briefly how the wave properties of electrons may be demonstrated.
(b) In a cathode ray tube electrons are accelerated until they acquire a velocity of $4.20 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the de Broglie wavelength of one of these electrons.

Wavelength = \qquad m
(ii) Explain how wave-particle duality is integral to the de Broglie equation.
\qquad
\qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (Advanced Subsidiary) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on
the Earth's surface
electron volt
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound

Sound intensity level/dB
$=10 \lg _{10} \frac{I}{I_{0}}$
Waves
Two-source interference
$\lambda=\frac{a y}{d}$
Light
Lens formula
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Magnification
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-\operatorname{Ir}$ (E.m.f. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation $\quad \lambda=\frac{h}{p}$

