Rewarding Learning

ADVANCED SUBSIDIARY General Certificate of Education January 2012

Physics

Assessment Unit AS 1
assessing
Module 1: Forces, Energy and Electricity
[AY111]
THURSDAY 12 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 3.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	
Marks	

Candidate Number
\qquad

THRSDAY 12 JANUARY, AFTERNOON

If you need the values of physical constants to answer any questions in this paper they may be found in the Data and Formulae sheet.

Answer all ten questions.

1 (i) What are base units?
\qquad
\qquad
(ii) State six base S.I. units.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The unit of stress is the pascal. Express the pascal in base units.

Base units = \qquad _

2 Two forces of 2 N and 5 N act on a body B as shown in Fig. 2.1.

Fig. 2.1
(a) State the magnitude and direction of the resultant force on B.

Magnitude $=$ \qquad N

Direction $=$ \qquad
(b) The 2 N force is now turned through 90° as shown in Fig. 2.2 (not to scale).

Fig. 2.2

By calculation or by use of a scale drawing, determine the magnitude and direction of the resultant force on the body B.

Magnitude $=$ \qquad N

Direction $=$ \qquad ${ }^{\circ}$ to horizontal

3 Where appropriate in this question you should answer in continuous prose.
You will be assessed on the quality of your written communication.
In this question you are to outline an experiment to measure the acceleration of free fall, g. Make use of the following headings:
(i) Labelled diagram of the experimental arrangement.
(ii) Measurements that are required for g to be determined accurately. (N.B.: If a data logging method is chosen, comment on data that is input as well as output data.)
\qquad
\qquad
\qquad
(iii) How the measurements would be used to obtain the value of g.
\qquad
\qquad
\qquad
\qquad
(iv) The measurements taken in (ii) are subject to uncertainty. Which of these uncertainties do you consider to be the most significant in determining the value of g ? Explain your answer.
\qquad
\qquad
\qquad
\qquad

4 A clay pigeon is a disc made of clay which when launched into the air acts as a target for people to shoot at. A clay pigeon launcher is situated 4 m behind a protective fence as shown in Fig. 4.1. The clay pigeon leaves the launcher at a speed of $26 \mathrm{~ms}^{-1}$ at an angle 50° to the horizontal.

Fig. 4.1
(a) (i) Show that it takes the clay pigeon 0.24 s to reach the top of the fence after launch.
(ii) Calculate the height of the fence if the clay pigeon just clears it.

> Height =
\qquad m
(b) The person holding the gun is standing at the point P. He has been told that at the top of the clay pigeon's trajectory the clay pigeon comes to rest.
(i) Do you agree or disagree with this statement? Explain your answer.
\qquad
\qquad
\qquad
(ii) Calculate the length of time between the person seeing the clay pigeon appearing at the top of the fence and it reaching the top of its trajectory.

Time $=$ \qquad s

5 (a) State the principle of moments.
\qquad
\qquad
\qquad
\qquad
(b) A uniform iron bar of length 4.0 m and weight 200 N is secured to a wall. The bar is held horizontally by a wire fixed to one end as shown in Fig. 5.1. The angle between the wire and the bar is 30°.

Fig. 5.1
(i) Calculate the tension in the wire.
Tension =
\qquad N

Tension
(ii) The tension calculated in (i) represents 40% of the maximum tension that the wire can withstand before breaking. A youth of mass 60 kg jumps up and grabs the bar with one hand at the point C, 1.2 m from the wall. This is shown in Fig. 5.2.

Fig. 5.2

By making an appropriate calculation, state, with an explanation, what will happen.
\qquad
\qquad
\qquad

6 An electric motor is used to pull up a bucket of water from the bottom of a well as shown in Fig. 6.1. The motor is attached to the bucket by a rope which passes over a pulley.

Fig. 6.1

The mass of the bucket and the water is 8 kg .
(a) Calculate the gain in potential energy of the bucket and water when it is raised from the bottom of the well to ground level.

Gain in PE = \qquad J
(b) (i) The motor is rated at $240 \mathrm{~V}, 1.5 \mathrm{~A}$. Calculate the power of the motor.

Examiner Only

Power $=$ \qquad W
(ii) If the motor is 80% efficient, calculate how long it will take to raise the bucket and water from the bottom of the well to ground level.

Time $=$ \qquad S

7 (a) An iron wire $P Q$ is fused at one end, Q, to a copper wire $Q R$ as shown in Fig. 7.1. The wire is clamped tightly at P.

Examiner Only

Fig. 7.1

The copper wire is 0.90 m long and its force constant $k_{c}=130 \mathrm{Ncm}^{-1}$. The iron wire is 1.40 m long and its force constant $k_{i}=195 \mathrm{Ncm}^{-1}$. A stretching force of 780 N is applied at R .

Calculate the total length of the combined wire PR when the 780 N force is applied. Ignore the weight of the wires.

Length of wire $\mathrm{PR}=$ \qquad m
(b) Fig. 7.2 shows a force-extension graph for another wire.

Fig. 7.2
(i) With reference to Fig. 7.2, explain why Hooke's law does not apply up to the elastic limit.
\qquad
\qquad
\qquad
\qquad
(ii) Explain why, when the extension is increased to point C, the wire
(ii) Explain why, when the extension is increased to point C , the wire
does not return to its original length when the force is removed.
\qquad
\qquad
\qquad
\square

8 (a) Define the electromotive force of a battery.
\qquad
\qquad
\qquad
(b) A 12Ω resistor is joined to the terminals of a battery of e.m.f. 10 V and internal resistance 4Ω, as shown in Fig. 8.1.

Fig. 8.1

The switch is closed.
(i) Calculate the reading on the ammeter.

Current $=$ \qquad A
(ii) Calculate the reading on the voltmeter, attached as shown in Fig. 8.1.
p.d. $=$ \qquad V
(iii) An alternative battery of the same e.m.f. but lower internal resistance is used. State two of the changes this would make to the performance of the circuit.
\qquad
\qquad
\qquad
\qquad

9 (a) Explain what non-ohmic behaviour means.
\qquad
\qquad
\qquad
(b) (i) A thermistor is made from a semiconducting material which has a negative temperature coefficient.

Sketch a graph to show the variation with temperature of the resistance of a negative temperature coefficient thermistor.

(ii) What property of ntc semi-conductors gives rise to this resistance change with temperature increase?
\qquad
\qquad
\qquad

10 The circuit in Fig. 10.1 consists of three resistors of values shown with a switch S between B and C.

Fig. 10.1
(a) (i) Calculate the current flowing through the 16Ω resistor, when switch S is open.

Current $=$ \qquad A
(ii) Calculate the current flowing through the 40Ω resistor, when the switch S is open.

Current $=$ \qquad A
(b) (i) The switch S between B and C is now closed. Calculate the current flowing through the 16Ω resistor.

Current $=$ \qquad A
(ii) What is the current flowing through the 40Ω resistor?

$$
\text { Current }=\ldots \mathrm{A}
$$

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (AS) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound

Sound intensity level/dB
$=10 \lg _{10} \frac{I}{I_{0}}$
Waves

$$
\text { Two-source interference } \quad \lambda=\frac{a y}{d}
$$

Light
Lens formula
Magnification
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-\operatorname{Ir}$ (E.m.f. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation
$\lambda=\frac{h}{p}$

