

Rewarding Learning

ADVANCED SUBSIDIARY General Certificate of Education 2011

Physics

Assessment Unit AS 2 assessing
 Module 2: Waves, Photons and Medical Physics
 [AY121]
 MONDAY 27 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 3.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total Marks	

1 The graphs in Fig. 1.1 and Fig. 1.2 describe particle oscillation for the same wave.

Fig. 1.1

Fig. 1.2
(a) What evidence exists to support the claim that both graphs describe the same wave?
\qquad
\qquad
(b) (i) Calculate the wavelength of the wave.

Wavelength = \qquad m
(ii) Calculate the frequency of the wave.

Frequency $=$ \qquad Hz
(iii) Calculate the speed of the wave.
\qquad ms^{-1}

2 Light is incident normally on a $35^{\circ}-55^{\circ}-90^{\circ}$ triangular glass prism as shown in Fig. 2.1. The refractive index for the glass prism is 1.50 .

Fig. 2.1
(a) Calculate the critical angle for the glass-air boundary.

Critical angle $=$ \qquad。
(b) (i) Tick the box (\checkmark) to indicate the side through which the light exits the prism.

PQ	

QR	

\square
(ii) On Fig. 2.1, complete the path of the ray as it passes through the prism and on into the air.
(iii) Determine the angle (measured to the normal) with which the light exits the side you indicated in (b)(i).

Angle $=$ \qquad。

Where appropriate in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

3 (a) An object labelled O is placed in front of a diverging lens L as shown in Fig. 3.1. Complete the ray diagram to locate the position of the image obtained. Label the image I.

The principal axis of the lens and the ray incident on the optical centre of the lens are included in the diagram. The locations of the principal foci are marked F_{1} and F_{2}.

Fig. 3.1
(b) Describe an experiment to determine the focal length of a converging lens. Your description should include

- a description of the apparatus and how it is used
- the measurement(s) to be taken
- how the results are analysed to obtain an accurate value of the focal length

Use the space below for any diagrams that you may wish to draw in responding to this question.
\qquad
Quality of written communication

4 In a normal six string acoustic guitar the top string is tuned so that its lowest natural frequency is 82 Hz when the full length of the string vibrates. Fig. 4.1 represents the guitar but only the top string has been shown.

Fig. 4.1
(a) (i) On Fig. 4.1, draw the first mode of vibration (the fundamental) for the string.
(ii) Label every node N and every anti-node A .
(b) (i) If the distance between \mathbf{B} and \mathbf{M} is 0.84 m , what is the
wavelength of the first mode of vibration of the standing wave on the string?

Wavelength = \qquad m
(ii) To produce a note of a higher frequency the guitarist places one finger at a point X on the string. The string cannot move at that point and the vibrating length is effectively reduced. He then plucks the string with another finger between X and B . The note obtained has a fundamental frequency of 328 Hz . Calculate the distance X to B .

Distance = \qquad m
(c) Guitarists are able to produce different modes of vibration on the same length of string by lightly touching the string. This creates a node at the point touched but does not reduce the effective length of the string that is vibrating.

Fig. 4.2

On Fig. 4.2 sketch the simplest mode of vibration that results when a guitarist touches the string at position F. The distance FM is 0.28 m and the distance BM is 0.84 m .

5 Fig. 5.1 illustrates an arrangement to observe interference. Laser light is incident upon an opaque slide on which there are two transparent slits (labelled S and T). The light transmitted through these slits is initially in phase and overlaps in the region between the slits and the screen and the resulting interference pattern is observed on the screen.

Fig. 5.1
(a) This arrangement ensures that light emerging from slits S and T is
coherent. Explain the meaning of the term coherent in this context.
(a) This arrangement ensures that light emerging from slits S and T is
coherent. Explain the meaning of the term coherent in this context.
\qquad
\qquad
(b) With this arrangement light emerging from slits S and T is in phase.

Explain the meaning of the term in phase in this context.
\qquad
\qquad
(c) The interference pattern obtained on the screen is a sequence of bright and dark fringes as shown in Fig. 5.2.

Fig. 5.2

By considering the paths followed by the light from slits S and T, explain the formation of a bright interference fringe.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) On the interference pattern obtained, the distance between the centres of seven bright fringes is 24.3 mm (see Fig. 5.2). The laser light has a wavelength of $6.42 \times 10^{-7} \mathrm{~m}$ and the separation of the double slits S and T is 0.66 mm . Use the data to determine the distance between the double slits and the screen.

Distance $=$ \qquad m

6 (a) A signal generator is connected to a speaker and a cathode ray oscilloscope (CRO). Fig. 6.1 represents the display on the oscilloscope. The grid on the oscilloscope screen is divided into centimetres.

Fig. 6.1

If the time base control on the oscilloscope is set to $40 \mu \mathrm{scm}{ }^{-1}$, determine the frequency of the sound wave.
\qquad Hz
(b) Residents of a housing development near a busy motorway are shielded from the noise of traffic by a barrier. Fig. 6.2 is a plan view of the situation showing the houses (A to J), sound wavefronts from the motorway and the barrier.

Fig. 6.2
(i) On Fig. 6.2, continue the path of the sound wavefront, as it passes the barrier, to show it in its next three positions.
(ii) State and explain what will happen to the shadow zone (the region behind the noise barrier into which no sound enters) when the mean wavelength of the sound from the motorway increases.
\qquad
\qquad
\qquad

7 Computed tomography (CT) scanning is a powerful diagnostic tool making use of X-rays.
(a) What is a "tomograph"?
\qquad
\qquad
(b) X-rays are produced in two distinct ways. Both ways involve high energy electrons being fired at a tungsten target. Outline the mechanisms by which the high energy incident electrons produce X-rays once they strike the tungsten target.

Mechanism 1 \qquad
\qquad
\qquad
Mechanism 2 \qquad
\qquad
\qquad
(c) Fig. 7.1 shows a simplified diagram of an X-ray tube in which the tungsten target is embedded in a large mass of copper all of which rotates.

Fig. 7.1
(i) Approximately 1% of the incident energy of the electrons is converted to X-rays. State what happens to the remaining 99\% and explain how the tube structure in Fig. 7.1 has been designed to cope with the 99% energy loss.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The emerging X-rays are passed through a 3 mm thick aluminium filter thereby removing the lower energy X-ray radiation. Explain why this is necessary.
\qquad
\qquad

8 (a) What is a photon?
(b) The graph in Fig. 8.1 illustrates the relationship between photon energy and radiation frequency.

Fig. 8.1

What is the numerical value for the gradient of this graph?

Gradient $=$ \qquad $\mathrm{Hz} \mathrm{J}{ }^{-1}$
(c) Calculate the energy of a photon if the radiation has a frequency of 200 MHz and a wavelength of 1.50 m .

Energy = \qquad J

9 Fig. 9.1 illustrates the electron energy levels, with their values of energy, in a hypothetical atom.
Level Energy
$\mathrm{n}=\infty \quad 0.0 \mathrm{eV}$
$\mathrm{n}=4 \longrightarrow-0.4 \mathrm{eV}$
$\mathrm{n}=3 \longrightarrow-6.0 \mathrm{eV}$
$\mathrm{n}=2$
$\mathrm{n}=1$
\qquad

Fig. 9.1

For each of the following scenarios, state what will happen, or what must have happened, and explain your answer in terms of the conservation of energy principle.
(a) An electron at $\mathrm{n}=2$ interacts with a quantum of energy equal to 300 eV .
\qquad
\qquad
\qquad
(b) An electron at $\mathrm{n}=3$ is struck by a photon of energy 5.7 eV .
\qquad
\qquad
\qquad
(c) A photon of frequency $3.94 \times 10^{16} \mathrm{~Hz}$ is emitted.
\qquad

10 Some phenomena associated with electromagnetic radiation may be described using a wave model, other phenomena require a particle model for their description. For some phenomena both models are acceptable.
(a) (i) Which of these models may be used to describe:

1. polarisation \qquad
2. the photoelectric effect
(ii) Name a phenomenon that can be described by either model.
\qquad
(b) Calculate the de Broglie wavelength of an alpha particle of mass $6.64 \times 10^{-27} \mathrm{~kg}$ and charge $3.20 \times 10^{-19} \mathrm{C}$ ejected from a nucleus at $4.50 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.

Wavelength = \qquad m

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (Advanced Subsidiary) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on
the Earth's surface
electron volt
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound

Sound intensity level/dB
$=10 \lg _{10} \frac{I}{I_{0}}$
Waves
Two-source interference
$\lambda=\frac{a y}{d}$
Light
Lens formula
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Magnification
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-\operatorname{Ir}$ (E.m.f. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation $\quad \lambda=\frac{h}{p}$

