

Rewarding Learning

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2011

Physics

Assessment Unit AS 1
 Module 1: Forces, Energy and Electricity

[AY111]

TUESDAY 21 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 2.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total Marks	

1 "To calculate the density of a material, the mass of a sample is divided by the volume of the sample. If the sample of the material is a cube, the volume is calculated by multiplying the lengths of the three sides of the cube together."
(a) Give two base quantities and two derived quantities named in the paragraph above. State the S.I. unit of each quantity that you have chosen.

Base Quantities	S.I. Unit

Derived Quantities	S.I. Unit

(b) Determine the base unit of energy.

Base unit = \qquad

Where appropriate in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

2 A pupil describes a simple experiment to measure the acceleration of free fall, g. Her method is as follows:

1. Drop a ball bearing from a measured height of 2 m and measure the time it takes to hit the ground using a stopclock.
2. Use the equation $s=1 / 2 g t^{2}$ to calculate a value for g where $s=2 \mathrm{~m}$ and t is the time recorded from the stopclock.

State what measurement has the largest source of uncertainty in this pupil's experiment and suggest methods by which the uncertainty could be reduced. Describe how the pupil could further improve the experiment and how the results could be used to obtain a more accurate value for g .
\qquad
Quality of written communication

3 When a long jumper completes a jump, his centre of mass is 1.0 m above ground level at take off and 0.4 m above ground level on landing.
(a) Sketch the path of the centre of mass of the long jumper from take off to landing on Fig. 3.1.

Fig. 3.1
(b) The long jumper has studied some physics and has read that in order to make the horizontal distance of his jump as long as possible he should jump at an angle of 45° to the horizontal.

The athlete takes off at a speed of $9.3 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 45° to the horizontal.
(i) Calculate the initial vertical velocity of the athlete.

Vertical velocity $=$ \qquad ms^{-1}
(ii) Show that the vertical component of the velocity of the athlete on landing has magnitude $7.4 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) Calculate the time spent in the air by the athlete during the jump.
Time =
\qquad s
(Questions continue overleaf)

4 The moment of a force about a point is defined as the magnitude of the force multiplied by the perpendicular distance from the line of action of the force to the point. Fig. 4.1 shows a force F acting to create a moment around the point P.

Fig. 4.1
(a) (i) State the directional sense of the moment caused by the force F.
\qquad
(ii) Show clearly on Fig. 4.1 what is meant by the perpendicular distance from the line of action of the force to point P. Label the distance d.
(b) A monkey of mass 24 kg hangs from a branch of a tree at a point 3.5 m from where the branch connects to the trunk of the tree. The branch has a mass of 180 kg and its centre of gravity is 1.3 m from the tree. Fig. 4.2 shows a diagram representing the tree trunk and the branch.
(i) Complete the diagram by drawing arrows at the appropriate positions on Fig. 4.2 to represent the weight of the branch and the monkey. Label the arrows with the magnitude of the forces.

Fig. 4.2
(ii) The branch will snap off the tree if the moment about the trunk exceeds 4020 Nm . A second monkey of mass 29 kg starts to walk from the trunk along the same branch. Assuming that the branch does not bend before it snaps, calculate the distance along the branch the monkey will reach before the branch snaps off.

Distance from trunk $=$ \qquad m
(iii) If the branch had started to bend downwards as the monkey walked along it, explain why it would have been able to walk further along the branch before it snapped.
\qquad
\qquad

5 When a ball is dropped from a height, h_{1}, it rebounds to a height, h_{2}.
(a) (i) Show that the energy efficiency of the bounce of the ball can be calculated using Equation 5.1

$$
\text { Energy efficiency }=\frac{h_{2}}{h_{1}} \quad \text { Equation } 5.1
$$

For a basketball to be used in an official competition the basketball must be inflated to an air pressure such that, when it is dropped onto the playing floor from a height of 1800 mm , it will rebound to a height of between 960 mm and 1160 mm .
(ii) Calculate the maximum energy efficiency of the bounce of a ball that is suitable to be used in official competitions.

Efficiency =
(b) Calculate the speed at which a ball leaves the ground, if it rebounds to a height of 960 mm . Assume no energy losses between the ball leaving the ground and reaching its rebound height.

Speed $=$ \qquad ms^{-1}

6 (a) State Hooke's law.
(b) A spring that obeys Hooke's law has a length of 8 cm when a load of 2 N is attached to it and a length of 14 cm when a load of 6 N is attached. The spring reaches its limit of proportionality when a load of 8 N is attached.
(i) On the grid of Fig. 6.1 draw a graph of force against length for the spring up to and beyond the limit of proportionality.

Fig. 6.1

(ii) Calculate the spring constant of the spring and state the units of the spring constant.

Spring constant $=$ \qquad
Units $=$

7 (a) State one similarity and one difference between potential difference and electromotive force (emf).

Similarity
\qquad
\qquad
Difference
\qquad
\qquad
(b) A camera battery has a capacity of 1400 mA h . This means that it may deliver a current of 1400 mA for 1 hour or 700 mA for 2 hours etc.
(i) Show that the total charge that flows is 5.04 kC
(ii) This charge transfers 14.6 kJ of electrical energy. Calculate the emf of the battery.
\qquad V

8 (a) (i) State Ohm's Law.

Fig. 8.1 shows the variation in the current through three electrical conductors, A, B and C, as the potential difference (P.D.) across them is altered.

Fig. 8.1
(ii) Which graph illustrates Ohm's Law for the greatest resistance, A, B or C?

Graph \qquad
(b) (i) Compare the value of resistance of conductors B and C over the full range shown.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest what component of a circuit conductor B might be and explain why you chose the component that you did.
\qquad
\qquad

BLANK PAGE

9 Manganin is an alloy of copper, manganese and nickel. An experiment was carried out to determine the resistivity of manganin. The sample of wire had a diameter of 0.40 mm .
(a) Show that the resistance of the wire is given by Equation 9.1 if all quantities are expressed in S.I. units.

$$
R=\frac{\rho l}{1.26 \times 10^{-7}} \quad \text { Equation } 9.1
$$

(b) The circuit shown in Fig. 9.1 was set up to measure the variation in the current through the wire as the length was varied from 0.40 m up to 1.20 m . The variable resistor was used to keep the potential difference across the wire constant at 2.0 V . The results are shown in Table 9.1.

Fig. 9.1

Table 9.1

Length/m	Current/A	Resistance/ Ω
0.40	1.31	
0.60	0.87	
0.80	0.65	
1.00	0.52	
1.20	0.44	

(i) Calculate the resistance of the wire at each length and insert the values into the last column of Table 9.1.
(ii) On the axes of Fig. 9.2 plot a graph of resistance against length
for the manganin wire.
(iii) Use your graph to calculate a value for the resistivity of
manganin.
for the manganin wire.
(iii) Use your graph to calculate a value for the resistivity of
manganin.
for the manganin wire.
(iii) Use your graph to calculate a value for the resistivity of
manganin. Resistivity $=\square$
\qquad
Unit $=$ \qquad

Fig. 9.2

10 (a) Show that the combined resistance of two equal resistors, R, in parallel is $\frac{R}{2}$.
(b) The total resistance of the network of resistors in Fig. 10.1 is $22 \mathrm{k} \Omega$.
(i) Calculate the resistance of the unknown resistor R .

Fig. 10.1
$R=$ \qquad $k \Omega$
(ii) The current flowing through the $12 \mathrm{k} \Omega$ resistor is 0.12 mA . Calculate the potential difference between the points A and B in the circuit.
\qquad V

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on
the Earth's surface
electron volt
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound intensity level/dB

Two-source interference

$$
\lambda=\frac{a y}{d}
$$

Light

Lens formula
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Magnification

$$
m=\frac{v}{u}
$$

Electricity

$V=E-\operatorname{Ir}($ E.m.f. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s \quad$ for a constant force
$F=k x$ (spring constant k)

Sound

$=10 \lg _{10} \frac{I}{I_{0}}$
Waves

Terminal potential difference
Potential divider
de Broglie equation
$\lambda=\frac{h}{p}$

