Rewarding Learning

ADVANCED SUBSIDIARY (AS)
Centre Number

Candidate Number
\qquad

General Certificate of Education

 2011
Physics

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Turn to page 2 for further Instructions and Information.

Question Number	Marks	
	Examiner Check	
1		
2		
3		
4		
5		
Total Marks		

INSTRUCTIONS TO CANDIDATES

Answer all the questions in this booklet. Rough work and calculations must also be done in this booklet. Except where instructed, do not describe the apparatus or experimental procedures.
The Teacher/Supervisor will tell you the order in which you are to answer the questions.
One hour is to be spent on Section A and 30 minutes on Section B.
Section A consists of four short experimental tests. You will have access to the apparatus
for 13 minutes for each of the tests. At the end of this 13-minute experimental period there is a 2-minute changeover to the area set aside for the next test. Any spare time before the start of the next test may be used to write up anything you have not yet completed.
At the end of your Section A work you will be told to move to the area set aside for Section B. Section B consists of one question in which you will analyse a set of experimental results.

INFORMATION FOR CANDIDATES

The total mark for this paper is 40 .
Section A and Section B carry 20 marks each.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each part question.
You may use an electronic calculator.

BLANK PAGE

(Questions start overleaf)

1 In this experiment you are to investigate how the period of oscillation of a system of springs varies as the number of springs in parallel in the system is increased.
(a) The apparatus in Fig. $\mathbf{1 . 1}$ has already been set up for you. Systems with two and three springs have also been provided on the bench.

Fig. 1.1

Displace the mass carrier a small distance, release and allow it to oscillate. Take readings to allow you to determine T, the period of the oscillation. Record all your results in Table 1.1.

Replace the system of one spring with the system of two springs and repeat the above procedure.

Finally replace the system of two springs with the system of three springs and repeat the above procedure.

Table 1.1

Number of springs		$\boldsymbol{T} / \mathbf{s}$
1		
2		
3		

(b) It is suggested that the relationship between the period T of the oscillations of the spring system and the number of springs N is one of the following:
(i) $T=2 \pi \sqrt{\frac{N m}{k}}$
(ii) $T=2 \pi \sqrt{\frac{m}{N k}}$
(iii) $T=2 \pi \sqrt{\frac{m}{k}}$
i.e. T is independent of N
where m and k are constants.
Using your results in Table 1.1, choose which of the equations correctly describes the trend of your results. Explain your answer.

Equation \qquad
Explanation:
\qquad
\qquad
\qquad

2 In this experiment you are to obtain a value for the focal length of a converging lens using the lens formula.

Fig. 2.1 shows the arrangement of the apparatus which has already been set up for you.

Fig. 2.1

The distance u has been set at 32.0 cm for your first reading.
(a) Without moving the object or the lens, adjust the position of the screen until a focused image of the object is seen on the screen. Measure the distance v between lens and screen. Record the value of v in Table 2.1.

Repeat the above procedure for $u=40.0$ and $u=50.0 \mathrm{~cm}$.
Record the corresponding values of v in Table 2.1.
Table 2.1

u/cm	v/cm
32.0	
40.0	
50.0	

合
(b) A relationship between u and v is given by the Equation 2.1.

$$
\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \quad \text { Equation } 2.1
$$

(i) Use Equation 2.1 and the result for $u=50.0 \mathrm{~cm}$ in Table 2.1 to calculate a value for f.
$f=$ \qquad cm
(ii) Explain how you would obtain a more accurate value of f using the results from Table 2.1.
\qquad
\qquad
(iii) What is the major source of uncertainty in this experiment?
\qquad
\qquad

3 In this experiment you are to measure the diameter and thickness of a 100 g slotted mass and find the thickness to diameter ratio.

You are provided with two measuring instruments, a micrometer screw gauge and a vernier calliper.
(a) Which of the two measuring instruments are you going to choose to measure the diameter of the 100 g slotted mass? Give a reason for your choice and state the uncertainty in a measurement using the instrument.

Instrument: \qquad

Uncertainty: \pm \qquad mm

For this question you are not expected to take repeat readings.
(b) Measure the diameter of the 100 g slotted mass and record the result below. Give your answer to an appropriate number of decimal places.

Diameter $=$ \qquad mm
(c) Measure the thickness of the 100 g slotted mass. Give your answer to an appropriate number of decimal places.

Thickness = \qquad mm
(d) Hence calculate the ratio of the thickness of the slotted mass to its diameter.

Ratio $=$
\qquad

BLANK PAGE
(Questions continue overleaf)

4 In this experiment you are to calculate the resistance of three pieces of wire which are of the same length, same material but have a different thickness. The wires are inside a sealed box. You are then to establish which wire has been connected to which pair of terminals.

Fig. 4.1 shows the circuit containing the sealed box, a power supply, switch, ammeter and voltmeter. The meters can be used to determine the resistance between selected pairs of terminals. One of the wires is soldered between terminals W and X , another is soldered between W and Y and the final wire is soldered between W and Z .

Fig. 4.1
(a) Connect lead Q to terminal X .

Hold the switch closed and record the values of current and voltage, shown on the meters, in Table 4.1. Repeat this process for lead Q connected to Y and then Z.
Note: the switch should only be closed as a reading is being taken.

Table 4.1

terminals	V/V	I/A	$R / \boldsymbol{\Omega}$
W and X			
W and Y			
W and Z			

(b) Hence calculate the resistance of each thickness of wire and record your results in Table 4.1.
(c) By examining your results, establish across which terminals the thickest and thinnest wires are connected. Explain your reasoning.

Thickest wire is soldered between W and \qquad
Thinnest wire is soldered between W and \qquad
Explanation:
\qquad
\qquad
\qquad

BLANK PAGE

5 The potential divider circuit

A circuit diagram of a potential divider circuit is shown in Fig. 5.1.

Fig. 5.1
R_{2} is a variable resistor. The values of $V_{\text {in }}$ and R_{1} are not known. A student uses the apparatus to measure $V_{\text {out }}$ for several values of R_{2}. The results obtained are recorded in Table 5.1.

Table 5.1

$\boldsymbol{R}_{\mathbf{2}} / \boldsymbol{\Omega}$	$\boldsymbol{V}_{\text {out }} / \mathbf{V}$	
50	8.2	
100	6.0	
150	4.8	
200	4.0	
250	3.4	

The relationship between R_{2} and $V_{\text {out }}$ is given by Equation 5.1.

$$
\frac{1}{V_{\text {out }}}=\frac{R_{2}}{V_{\text {in }} R_{1}}+\frac{1}{V_{\text {in }}}
$$

(a) Use Equation 5.1 to show that a graph of $\frac{1}{V_{\text {out }}}$ plotted against R_{2} will result in a straight line graph of gradient $\frac{1}{V_{\text {in }} R_{1}}$ and intercept $\frac{1}{V_{\text {in }}}$.

Data Processing

(b) (i) Head the blank column of Table 5.1 with the quantity that should be plotted to draw the graph in (a) and include appropriate unit.
(ii) Calculate the numerical values required to complete the blank column in Table 5.1 to an appropriate number of significant figures.
(iii) On the grid of Fig. 5.2 opposite, draw the graph of the processed data in Table 5.1. Label the axes and choose suitable scales. Plot the points and draw the best fit straight line.

Analysis

(c) (i) Determine the value of $V_{\text {in }}$.

$$
V_{\text {in }}=\ldots V
$$

(ii) Determine the experimental percentage uncertainty in $V_{\text {in }}$ by drawing a line of extreme fit on Fig 5.2.

$$
\text { Uncertainty }= \pm
$$

\qquad \%

Fig. 5.2
(iii) Calculate the value of R_{1}
$R_{1}=$ \qquad Ω
[4]

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

