

Rewarding Learning

ADVANCED SUBSIDIARY General Certificate of Education January 2011

Physics

[AY111]
WEDNESDAY 12 JANUARY, MORNING

Assessment Unit AS 1 assessing
 Module 1: Forces, Energy and Electricity

Candidate Number
\qquad

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 9 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Total Marks

If you need the values of physical constants to answer any questions in this paper they may be found in the Data and Formulae sheet.

Answer all ten questions.

1 (a) (i) What is a scalar quantity?
\qquad
\qquad
(ii) What is a vector quantity?
\qquad
\qquad
(b) Six physical quantities are listed below. Indicate which of the physical to the quantity.

Potential energy \square

Charge \square
Force \square
Power \square

Abstract

quantities are vectors by placing a tick (\mathcal{J}) in the box corresponding

Frequency \square
Velocity

(c) Fig. 1.1 shows a force of 12 N acting on a brick resting on a horizontal surface.

Fig. 1.1
(i) Find by calculation the horizontal and vertical components of this force.

Horizontal component $=$ \qquad N

Vertical component = \qquad N
(ii) What is the resultant vertical force acting on the horizontal surface if the brick has mass 3.0 kg ?

Force $=$ \qquad N

2 (a) A catapult is used to project a ball vertically upwards with an initial velocity of $5.0 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the maximum height reached by the ball.

Maximum height $=$ \qquad m
(ii) Calculate the total flight time (from launch until it returns to the starting point).

Flight time $=$ \qquad s
(b) Fig. 2.1 is a simplified sketch graph of velocity v against time t for a car travelling along a straight road between two sets of traffic lights.

Fig. 2.1
(i) Describe in words how the acceleration of the car varies in the following time intervals from t_{1} to t_{4}.

From t_{1} to t_{2} : \qquad
From t_{2} to t_{3} : \qquad
From t_{3} to t_{4} : \qquad
(ii) State how the distance between the traffic lights could be
\qquad
\qquad

deduced from Fig. 2.1.

3 (a) State Newton's second law of motion.
(b) A person, of mass 55.0 kg , stands on bathroom scales in a lift. The scales are calibrated to measure in newtons.
(i) The lift starts to ascend vertically upwards with constant acceleration of $1.5 \mathrm{~m} \mathrm{~s}^{-2}$. Calculate the scale reading while the lift is accelerating upwards.

Reading = \qquad N
(ii) After this initial acceleration the lift continues to travel upwards at constant speed.

Determine the scale reading in this case.

Reading = \qquad N
(iii) The lift then starts to slow down with constant retardation of $1.0 \mathrm{~m} \mathrm{~s}^{-2}$. Calculate the scale reading while the lift is slowing down.

Reading = \qquad N

4 Fig. 4.1 shows a uniform plank, of weight 30 N and length 3 m , resting on two supports. The supports are 0.5 m and 2.0 m from the left hand end of the plank. A weight of 18 N is suspended from the left hand end of the plank.

Fig. 4.1
(a) Find the reactions, \mathbf{X} and \mathbf{Y}, at the two supports.
$X=$ \qquad N
$Y=$ \qquad N
(b) By how much should the weight on the left hand end be increased so that the reaction Y becomes zero?

Increase in weight = \qquad N

5 A small car has a mass of 800 kg and can accelerate from rest to a velocity of $27.8 \mathrm{~m} \mathrm{~s}^{-1}$ in 13.5 seconds.

Kinetic energy = \qquad J
(ii) Calculate the useful power output of the engine to produce this acceleration.

Power output = \qquad W
(iii) The efficiency of the engine in converting chemical energy to useful kinetic energy is 29%. Calculate the chemical energy from the petrol needed to produce this amount of kinetic energy.
\qquad J
(b) The car, travelling at $27.8 \mathrm{~ms}^{-1}$, reaches the bottom of the slope as shown in Fig 5.1. The driver switches off the engine and allows the car to free wheel up the slope. Ignoring friction, calculate how far the car travels along the slope before coming to rest.

Distance up the slope = \qquad m

6 (a) (i) Draw and label an experimental arrangement which could be used to measure the Young modulus of the material of a long wire.
(ii) Apart from measuring the force on the wire, there are three other quantities to be measured when determining the Young modulus. In the table below list the other measurements you would make, and state the instruments you would use to make the measurements.

Measurement	Instrument

(b) A stretching force of 5.5 N is applied to a copper wire of length 2.5 m , producing a strain of 7.8×10^{-4}. The Young Modulus of copper is $1.2 \times 10^{11} \mathrm{Nm}^{-2}$.
(i) Calculate the extension produced in the wire.

> Extension =
\qquad mm
(ii) Calculate the cross-sectional area of the wire.
\qquad mm^{2}

7 (a) Name one example of an ohmic conductor.

On Fig. 7.1, sketch a graph to illustrate how the current through the conductor you have named varies with the potential difference across it. Assume the temperature of the conductor remains constant.

[2]
Fig. 7.1
(b) (i) Explain what is meant by superconductivity. On Fig. 7.2 sketch a graph to illustrate this effect for a wire made of a superconducting material, both below and above the superconducting transition temperature. Label the transition temperature T_{s}.

Fig. 7.2
(ii) State one application of superconductivity.

8 A current of 60 mA flows through a resistor of resistance 80Ω for 12 minutes.
(a) (i) Calculate the amount of charge which passes through the resistor in this time.

Charge = \qquad C
(ii) Hence calculate the number of electrons which pass through the resistor in this time.

Number of electrons = \qquad
(b) (i) Calculate the potential difference across the resistor.

Potential difference $=$ \qquad V
■
(ii) Calculate the heat energy dissipated by the resistor in 12 minutes.

Energy = \qquad J

BLANK PAGE

(Questions continue overleaf)

In this question you should answer in continuous prose where appropriate. You will be assessed on the quality of your written communication.

9 (a) Describe an experiment to determine the internal resistance of a battery. Include a circuit diagram.

Circuit diagram

Description of experiment:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
(b) (i) Internal resistance can be obtained graphically. Label the axes of Fig 9.1 to enable internal resistance to be determined. Sketch a graph of the results obtained from such an experiment.

Fig. 9.1
(ii) How is the internal resistance obtained from your graph?
\qquad
\qquad
Quality of written communication
(c) A car battery has e.m.f 12.6 V and internal resistance 0.02Ω. When the starter motor is connected to the battery, the battery delivers a current of 145 A . Calculate the terminal potential difference when the starter is connected.

Terminal potential difference $=$ \qquad V

10 Fig. 10.1 depicts two fixed resistors and a variable resistor connected in series to an 18 V power supply of negligible internal resistance. The arrangement can be used to give a variable output voltage between C and D.

Fig. 10.1
(i) Calculate the current flowing round the circuit.

Current $=$ \qquad mA
(ii) Hence calculate the potential difference across the 120Ω variable resistor (the voltage between \mathbf{A} and \mathbf{B}).

Potential difference $=$ \qquad V
Current
(iii) Calculate the potential difference between the point \mathbf{D} and the

Potential difference $=$ \qquad V
(iv) A 210Ω resistor is now placed across the output between \mathbf{C} and D. Calculate the new potential difference between \mathbf{C} and \mathbf{D}.

Potential difference $=$ \qquad V

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (AS) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound intensity level/dB

Two-source interference
$\lambda=\frac{a y}{d}$
Light
Lens formula
Magnification

Electricity

Terminal potential difference
Potential divider
$V=E-\operatorname{Ir}(E . m . f$. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation
$\lambda=\frac{h}{p}$

