ADVANCED
General Certificate of Education January 2010

Physics

Assessment Unit A2 1
assessing
Module 4: Energy, Oscillations and Fields

[A2Y11]

MONDAY 18 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all seven questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90 .
Quality of written communication will be assessed in questions 2(a) and 4(c).
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formula Sheet which is inside this question paper.
You may use an electronic calculator.
Question 7 contributes to the synoptic assessment requirement of the Specification.
You are advised to spend about 55 minutes in answering questions 1-6, and about 35 minutes in answering question 7.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	

Total Marks

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.

1 A wire of cross sectional area A and length L is clamped at one end and is stretched by a force F applied at the other. This force causes an extension x.
(a) Write down expressions for:
(i) the stress σ acting on the wire,
$\sigma=$ \qquad
(ii) the $\operatorname{strain} \varepsilon$ in the wire.

$$
\varepsilon=
$$

Answer all seven questions

(i)
(b) A copper wire of length 2.70 m and diameter 1.50 mm is clamped at one end as shown in the experimental arrangement in Fig. 1.1. It is stretched by the application of a load of 468 N .

Fig. 1.1

Given that the Young modulus of copper is 128 GPa .
(i) Calculate the extension of the copper wire when the load is applied.

Extension $=$ \qquad mm
(ii) Calculate the strain energy per unit volume stored in the wire when it is extended.

Strain energy per unit volume $=$ \qquad $\mathrm{kJ} \mathrm{m}^{-3}$

2 (a) Describe an experiment to verify Equation $\mathbf{2 . 1}$ for a real gas of fixed mass held at constant pressure.

$$
\frac{V}{T}=\mathrm{a} \text { constant }
$$

where $V=$ gas volume and $T=$ temperature in kelvin.

In your description you should include
(i) a labelled diagram of the apparatus,
(ii) how a series of results are taken,
(iii) how the relationship is verified.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(b) A container of volume $4.3 \times 10^{-2} \mathrm{~m}^{3}$ holds $3.1 \times 10^{-2} \mathrm{~kg}$ of an ideal gas at a pressure of $0.43 \times 10^{5} \mathrm{~Pa}$ and a temperature of $17^{\circ} \mathrm{C}$.
(i) Calculate the number of gas molecules in the container.

Number of molecules $=$
(ii) Calculate the root mean square speed of these molecules.
r.m.s. speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

3 Fig. 3.1 shows a cross-section of the Earth.

Fig. 3.1
(a) Describe and explain how the angular velocity and linear velocity
of a person on the surface of the Earth changes as he travels along the Earth's surface from the point A on Fig. 3.1 to the point B at the equator.

Angular velocity
\qquad
\qquad
\qquad

Linear velocity
\qquad
\qquad
\qquad
(b) The radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$. Calculate the centripetal acceleration of an object placed at the equator.

Acceleration $=$ \qquad $\mathrm{m} \mathrm{s}^{-2}$

4 (a) State the characteristics of the acceleration of a body moving in simple harmonic motion.
(b) An object oscillates in simple harmonic motion with amplitude 0.023 m and maximum acceleration $2.75 \mathrm{~m} \mathrm{~s}^{-2}$.

Calculate the periodic time of the oscillation from these data.
$T=$ \qquad s
(c) An object is executing simple harmonic motion.

From time $t=0$ to time $t=t_{1}$ the oscillations are not damped.
From time $t=t_{1}$ to time $t=t_{2}$ the oscillations are lightly damped.
Write an account of the variation with time of the amplitude of the object from time $t=0$ to time $t=t_{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication

5 (a) (i) What is meant by a field of force?
\qquad
\qquad
(ii) State one similarity and one difference between electric and gravitational fields:

Similarity:
\qquad
\qquad

Difference:
\qquad
\qquad
(b) A sphere of mass 2.30 g has an electric charge of $+3.40 \mu \mathrm{C}$. It is dropped in a vacuum between two metal plates as shown in Fig. 5.1. The plates are separated by 9.0 cm , and a potential difference of 160 V is applied between them.

Fig. 5.1
(i) Calculate the magnitude of the gravitational force acting on the sphere.

Gravitational force $=$ \qquad N
(ii) Calculate the magnitude of the electrical force acting on the sphere.

Electrical force $=$ \qquad N
(iii) Describe the path of the sphere between the metal plates under the action of both forces.
\qquad
\qquad

6 (a) State, in words, Newton's law of gravitation.
(b) Using Newton's law of gravitation, show that the period T of revolution of a satellite is related to the radius r of the orbit by Equation 6.1

$$
T^{2}=\frac{4 \pi^{2}}{G M} r^{3}
$$

Equation 6.1
where M is the mass of the planet that is being orbited.
(c) In this part of the question, use the following data:

Radius of Earth $=6.37 \times 10^{6} \mathrm{~m}$
Mass of Earth $=5.98 \times 10^{24} \mathrm{~kg}$
(i) A satellite orbits the Earth in a geostationary orbit. What is meant by a geostationary orbit?
\qquad
\qquad
(ii) Calculate the height of the satellite above the Earth's surface.

Height $=$ \qquad m
(iii) Calculate the linear velocity of the geostationary satellite.

$$
\text { Linear velocity }=\ldots \mathrm{m} \mathrm{~s}^{-1}
$$

In your answer, you will be expected to bring together and apply principles and contexts from different areas of physics, and to use the skills of physics, in the particular situation described.

You are advised to spend about 35 minutes in answering this question.

Sedimentation equilibrium

Introduction

When a large number of identical particles are suspended in a liquid, they tend to settle in the way illustrated in Fig. 7.1. There are many particles at the bottom of the liquid column, but progressively fewer as one goes up from the bottom.

Fig. 7.1
According to theory, the equilibrium number density n of particles at a height h above the bottom of the liquid column is given by Equation 7.1

$$
n=n_{0} \mathrm{e}^{\frac{-m g \rho h}{k T}}
$$

Equation 7.1
where n_{0} is a constant, m is the mass of a particle, g is the acceleration of free fall, k is the Boltzmann constant, T is the temperature in kelvin and ρ allows for the difference in density of the liquid and the material of the particles. ρ is given by Equation 7.2

$$
\rho=1-\frac{\rho_{l}}{\rho_{p}}
$$

Equation 7.2
where ρ_{l} is the liquid density and ρ_{p} is the particle material density.

About a century ago, Jean Perrin carried out experiments based on this theory. He used particles of a yellow pigment called gamboges, suspended in water. By counting the particles at different heights h in the water column, he obtained values of n which could then be fitted to his theory. From his results he was able to deduce a value for the Boltzmann constant k of $1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$.
(a) (i) What name is given to the mathematical function represented by Equation 7.1?
\qquad
(ii) Name another physical phenomenon which is governed by the
mathematical function in Equation 7.1, but which uses different variables.
\qquad
(iii) On Fig. 7.2, sketch the variation of n with h represented by Equation 7.1.

Fig. 7.2

- 7
(b) (i) Show that the height at which n has a value equal to $\frac{1}{2} n_{0}$ is given by Equation 7.3.

$$
h=\left[\frac{k T}{m g \rho}\right] \log _{\mathrm{e}} 2
$$

(ii) Show that the base unit on the right hand side of Equation 7.3 is the metre, the same as that on the left hand side.

When an object is immersed in a liquid, it is subjected to a second force. This force, called upthrust, acts upwards and has a magnitude equal to the weight of liquid displaced by the object. Thus, the effective weight of an object is the resultant of the weight and upthrust forces acting on the object.
(c) (i) If the density of the liquid that the particles are suspended in change.
\qquad
(ii) Predict and explain how using a liquid of lower density would
affect the distribution of particles throughout the liquid.
\qquad
\qquad
(iii) Explain your prediction using Equation 7.1 and Equation 7.2.
\qquad
\qquad
\qquad
\qquad

is reduced, state how the effective weight of the particles will

(d) In Table 7.1 are recorded the data for a sedimentation equilibrium experiment that used water as the liquid. The information directly below is relevant to this question.

Density of water at $290 \mathrm{~K}=0.999 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Density of material of particle $=1.003 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Temperature of water $=290 \mathrm{~K}$
Boltzmann constant, $k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Acceleration of free fall, $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Table 7.1

h / mm	n / mm^{-3}	$\log _{\mathrm{e}}\left(n / \mathrm{mm}^{-3}\right)$
0.200	1160	
0.400	632.7	
0.600	347.2	
0.800	188	
1.000	103.5	
1.200	56	

(i) Two of the values in the column headed n / mm^{-3} have been expressed to a different number of significant figures than the rest of the column. Write down the two values and state to how many significant figures they have been expressed.
\qquad
\qquad
(ii) Use Equation 7.1 to explain why a graph plotted of $\log _{\mathrm{e}}\left(\mathrm{n} / \mathrm{mm}^{-3}\right)$ against h / mm will be a straight line and that it will not go through the origin.
\qquad
\qquad
\qquad
\qquad
(iii) Obtain values of $\log _{e}\left(n / \mathrm{mm}^{-3}\right)$ and insert these values into the appropriate column of Table 7.1.
(iv) Plot a graph of $\log _{\mathrm{e}}\left(n / \mathrm{mm}^{-3}\right)$ against h / mm on the graph grid of Fig. 7.3.
(v) Obtain the gradient of your graph in Fig. 7.3. Give the unit for the gradient.

Gradient $=$ \qquad
Unit $=$ \qquad
(vi) Use a suitable form of Equation 7.1, your answer to (v) and particle. Show clearly how you obtain this value.

Mass of particle $=$ \qquad kg
(vii) Calculate a value for n_{0}.

$$
n_{0}=
$$

relevant data given, to calculate a value for the mass m of a

$$
\mathrm{K}=\mathrm{Kg}
$$

Fig. 7.3

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
permeability of a vacuum
permittivity of a vacuum
elementary charge the Planck constant
unified atomic mass unit mass of electron
mass of proton
molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s} \\
& -2 \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:
Mechanics

Momentum-impulse
relation
Power
Conservation of energy
$m v-m u=F t$
for a constant force
$P=F v$
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s$
for a constant force

Simple harmonic motion

Displacement
$x=x_{0} \cos \omega t$ or $x=x_{0} \sin \omega t$

Velocity
Simple pendulum
Loaded helical spring
Medical physics
Sound intensity
level/dB
Sound intensity
difference/dB
Resolving power
$\sin \theta=\lambda / D$

Waves

Two-slit interference $\quad \lambda=a y / d$
Diffraction grating $\quad d \sin \theta=n \lambda$

Light

Lens formula

$$
1 / u+1 / v=1 / f
$$

Stress and Strain
Hooke's law
$F=k x$
Strain energy
$E=\langle F\rangle x$ $\left(=\frac{1}{2} F x=\frac{1}{2} k x^{2}\right.$ if Hooke's law is obeyed)

Electricity

Potential divider

$$
V_{\mathrm{out}}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)
$$

Thermal physics

Average kinetic energy of a molecule
Kinetic theory

$$
\begin{aligned}
& \frac{1}{2} m<c^{2}>=\frac{3}{2} k T \\
& p V=\frac{1}{3} N m<c^{2}>
\end{aligned}
$$

Capacitors

Capacitors in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Capacitors in parallel $C=C_{1}+C_{2}+C_{3}$

Time constant
$\tau=R C$

Electromagnetism

Magnetic flux density due to current in
(i) long straight solenoid
$B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Alternating currents

A.c. generator

Particles and photons

Radioactive decay

Half life

$$
\begin{aligned}
& E=E_{0} \sin \omega t \\
& =B A N \omega \sin \omega t
\end{aligned}
$$

Photoelectric effect $\quad \frac{1}{2} m v_{\max }^{2}=h f-h f_{0}$ de Broglie equation $\quad \lambda=h / p$

Particle Physics

Nuclear radius

