

ADVANCED General Certificate of Education January 2010

Physics

Assessment Unit A2 1 assessing Module 4: Energy, Oscillations and Fields

[A2Y11]

MONDAY 18 JANUARY, AFTERNOON

Centre Number

71

Candidate Number

	A2Y11

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all seven** questions.

Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Quality of written communication will be assessed in questions 2(a) and 4(c).

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

Your attention is drawn to the Data and Formula Sheet which is inside this question paper.

You may use an electronic calculator.

Question 7 contributes to the synoptic assessment requirement of the Specification.

You are advised to spend about 55 minutes in answering questions **1–6**, and about 35 minutes in answering question **7**.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		

Total	
Marks	

5515

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.		
	Answer all seven questions	
1	A wire of cross sectional area A and length L is clamped at one end and is stretched by a force F applied at the other. This force causes an extension x .	
	(a) Write down expressions for:	
	(i) the stress σ acting on the wire,	
	σ=	
	(ii) the strain ε in the wire.	
	<i>ε</i> = [2]	

[Turn over

Quality of written communication

5515

(a) Describe an experiment to verify Equation 2.1 for a real gas of fixed mass held at constant pressure. $\frac{V}{T} = \text{a constant}$ Equation 2.1

where V = gas volume and T = temperature in kelvin.

In your description you should include

(i) a labelled diagram of the apparatus,

(ii) how a series of results are taken,

Examiner Only Marks Remai

_[5]

[1]

2

3 Fig. 3.1 shows a cross-section of the Earth.

Fig. 3.1

(a) Describe and explain how the angular velocity and linear velocity of a person on the surface of the Earth changes as he travels along the Earth's surface from the point A on **Fig. 3.1** to the point B at the equator.

Angular velocity

Linear velocity

_[2]

_[2]

Examiner Only Marks Remar

acceleration of an object place	ced at the equator.		Marks
Acceleration -	$m s^{-2}$	[3]	
	_ 111 5	[3]	

(b) The radius of the Earth is 6.4×10^6 m. Calculate the centripetal

Examiner Only

	[2]	
(b)	An object oscillates in simple harmonic motion with amplitude 0.023 m and maximum acceleration 2.75 m s ⁻² .	
	Calculate the periodic time of the oscillation from these data.	
	$T = \{s}$ [4]	

5	(a)	(i)	What is meant by a field of force ?	Examin	er Only
	()			Marks	Remark
			[1]		
		(ii)	State one similarity and one difference between electric and gravitational fields:		
			Similarity:		
			[1]		
			Difference:		
			[1]		
			[1]		
	(b)	A s dro The	phere of mass 2.30 g has an electric charge of $+3.40 \mu$ C. It is pped in a vacuum between two metal plates as shown in Fig. 5.1 . e plates are separated by 9.0 cm, and a potential difference of 160V		
		is a	pplied between them.		
			Sphere		
			Vacuum		

(i)	Calculate the magnitude of the grasphere.	avitational force acting on the	Examiner Marks R	Only Remar
	Gravitational force = N	[[1]	
(ii)	Calculate the magnitude of the ele	ectrical force acting on the		
	sphere.			
	Electrical force = N		[2]	
iii)	Describe the path of the sphere be action of both forces.	etween the metal plates under	the	

[Turn over

6	(a)	State, in words, Newton's law of gravitation.	Examiner Only	
			Marks	Remark
		[3]		
	(b)	Using Newton's law of gravitation, show that the period T of revolution of a satellite is related to the radius r of the orbit by Equation 6.1		
		$T^2 = \frac{4\pi^2}{GM} r^3$ Equation 6.1		

where M is the mass of the planet that is being orbited.

[3]

7 Data analysis question

In your answer, you will be expected to bring together and apply principles and contexts from different areas of physics, and to use the skills of physics, in the particular situation described.

You are advised to spend about 35 minutes in answering this question.

Sedimentation equilibrium

Introduction

When a large number of identical particles are suspended in a liquid, they tend to settle in the way illustrated in Fig. 7.1. There are many particles at the bottom of the liquid column, but progressively fewer as one goes up from the bottom.

Fig. 7.1

According to theory, the equilibrium number density *n* of particles at a height h above the bottom of the liquid column is given by Equation 7.1

$$n = n_0 e^{\frac{-mg\rho h}{kT}}$$
 Equation 7.1

where n_0 is a constant, *m* is the mass of a particle, *g* is the acceleration of free fall, k is the Boltzmann constant, T is the temperature in kelvin and ρ allows for the difference in density of the liquid and the material of the particles. ρ is given by Equation 7.2

$$\rho = 1 - \frac{\rho_l}{\rho_p}$$

Equation 7.2

Examiner Only Re

Marks

where ρ_l is the liquid density and ρ_p is the particle material density.

www.StudentBounty.com

5515

www.StudentBounty.com Homework Help & Pastpaper (b) (i) Show that the height at which *n* has a value equal to $\frac{1}{2}n_0$ is given by Equation 7.3.

$$h = \left\lfloor \frac{kT}{mg\rho} \right\rfloor \log_e 2$$

(ii) Show that the base unit on the right hand side of Equation 7.3 is the metre, the same as that on the left hand side.

When an object is immersed in a liquid, it is subjected to a second force. This force, called upthrust, acts upwards and has a magnitude equal to the weight of liquid displaced by the object. Thus, the effective weight of an object is the resultant of the weight and upthrust forces acting on the object.

- (c) (i) If the density of the liquid that the particles are suspended in is reduced, state how the effective weight of the particles will change.
 - (ii) Predict and explain how using a liquid of lower density would affect the distribution of particles throughout the liquid.

(iii) Explain your prediction using Equation 7.1 and Equation 7.2.

_[2]

5515

Equation 7.3 [3] [3] ____[1] _____[1]

Examiner Only Re

(d) In **Table 7.1** are recorded the data for a sedimentation equilibrium experiment that used water as the liquid. The information directly below is relevant to this question.

Density of water at $290 \text{ K} = 0.999 \times 10^3 \text{ kg m}^{-3}$ Density of material of particle = $1.003 \times 10^3 \text{ kg m}^{-3}$ Temperature of water = 290 KBoltzmann constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ Acceleration of free fall, $g = 9.81 \text{ m s}^{-2}$

<i>h</i> /mm	<i>n</i> /mm ⁻³	$\log_{e} (n/\text{mm}^{-3})$
0.200	1160	
0.400	632.7	
0.600	347.2	
0.800	188	
1.000	103.5	
1.200	56	

Tal	ble	7.	1
			-

(i) Two of the values in the column headed n/mm^{-3} have been expressed to a different number of significant figures than the rest of the column. Write down the two values and state to how many significant figures they have been expressed.

[2]

Examiner Only Marks Rema

(ii) Use Equation 7.1 to explain why a graph plotted of $\log_e (n/\text{mm}^{-3})$ against *h*/mm will be a straight line and that it will not go through the origin.

__[3]

(iii)	Obtain values of $\log_{e} (n/\text{mm}^{-3})$ and insert these values into the appropriate column of Table 7.1. [2]		Examiner Marks R	Only Remark
(iv)	Plot a graph of $\log_{e} (n/\text{mm}^{-3})$ against <i>h</i> /mm on the graph grid Fig. 7.3 .	of [5]		
(v)	Obtain the gradient of your graph in Fig. 7.3 . Give the unit for gradient.	the		
	Unit =	[3]		
(vi)	Use a suitable form of Equation 7.1 , your answer to (\mathbf{v}) and relevant data given, to calculate a value for the mass m of a particle. Show clearly how you obtain this value.			
	Mass of particle = kg	[4]		
(vii)	Calculate a value for n_0 .			
	n =	[2]		
	<i>n</i> ₀ –	[~]		

18 www.StudentBounty.com Homework Help & Pastpapers

Fig. 7.3

www.StudentBounty.com Homework Help & Pastpapers

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants

speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m s}^{-1}$
permeability of a vacuum	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H \ m^{-1}}$
permittivity of a vacuum	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
	$\left(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{F}^{-1} \mathrm{m}\right)$
elementary charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J s}$
unified atomic mass unit	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$
mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J} \mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
acceleration of free fall on the Earth's surface	$g = 9.81 \text{ m s}^{-2}$
electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics		Thermal physics	
Momentum-impulse relation	mv - mu = Ft for a constant force	Average kinetic energy of a molecule	$\frac{1}{2}m \langle c^2 \rangle = \frac{3}{2}kT$
Power	P = Fv	Kinetic theory	$pV = \frac{1}{3}Nm \langle c^2 \rangle$
Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force	Capacitors Capacitors in series	$\frac{1}{C} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$
Simple harmonic motio	n	Capacitors in parallel	$C = C_1 + C_2 + C_3$
Displacement	$x = x_0 \cos \omega t \text{ or}$ $x = x_0 \sin \omega t$	Time constant	$\tau = RC$
Velocity	$v = \pm \omega \sqrt{{x_0}^2 - x^2}$	Electromagnetism	
Simple pendulum	$T=2\pi\sqrt{l/g}$	Magnetic flux density due to current in	
Loaded helical spring	$T=2\pi\sqrt{m/k}$	(i) long straight	$B = \frac{\mu_0 NI}{I}$
Medical physics		soleliola	l I
Sound intensity level/dB	$= 10 \lg_{10}(I/I_0)$	(ii) long straight conductor	$B = \frac{\mu_0 I}{2\pi a}$
Sound intensity difference/dB	$= 10 \lg_{10}(I_2/I_1)$	Alternating currents	$F - F \sin \omega t$
Resolving power	$\sin \theta = \lambda / D$	A.e. generator	$= BAN\omega \sin \omega t$
Waves		Particles and photons	
Two-slit interference	$\lambda = ay/d$	Radioactive decay	$A = \lambda N$
Diffraction grating	$d\sin\theta = n\lambda$		$A = A_0 e^{-\lambda t}$
Light		Half life	$t_{\frac{1}{2}} = 0.693/\lambda$
Lens formula	1/u + 1/v = 1/f	Photoelectric effect	$\frac{1}{2}mv_{\max}^2 = hf - hf_0$
Stress and Strain		de Broglie equation	$\lambda = h/p$
Hooke's law	F = kx	Particle Physics	
Strain energy	$E = \langle F \rangle x$ (= $\frac{1}{2}Fx = \frac{1}{2}kx^2$ if Hooke's law is obeyed)	Nuclear radius	$r = r_0 A^{\frac{1}{3}}$
Electricity			
Potential divider	$V_{\rm out} = R_1 V_{\rm in} / (R_1 + R_2)$		

5515.02