ADVANCED
General Certificate of Education 2009

Physics

Assessment Unit A2 3A

assessing
Module 6: Particle Physics
[A2Y31]

Candidate Number
\qquad

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.

Answer all five questions
1 The radius of a nucleus can be obtained using Equation 1.1.

$$
r=r_{0} A^{1 / 3}
$$

Equation 1.1
(a) (i) State what each of the terms in Equation 1.1 represents.
$r_{0}=$ \qquad
$A=$ \qquad
(ii) An isotope of the element beryllium (Be) has 4 protons and 5 neutrons.
Electron diffraction experiments have revealed that this isotope has a nuclear radius of $2.50 \times 10^{-15} \mathrm{~m}$.
Use these data to calculate a value for r_{0} in femtometre (fm).
$r_{0}=$ \qquad fm
(ii) An isotope of the element beryliium (Be) has 4 protons and
\qquad
(iii) Using Equation 1.1 and your value of r_{0} from (a)(ii), determine the numerical values of the gradient and the intercept of the graph of $\log _{10} r$ against $\log _{10} A$ shown in Fig. 1.1.

Fig. 1.1

Intercept $C=$ \qquad
Gradient $=$ \qquad

2 Nuclear fusion offers significant potential advantages as a future source of energy as compared to fossil fuels or fission.
(a) Outline one potential advantage offered by nuclear fusion.
\qquad
\qquad
(b) The advantages of nuclear fusion are only theoretical because practical fusion reactors are still in the development stage. One experimental reactor is the Joint European Torus (JET) reactor in the UK. In this facility a plasma is heated to a temperature of about 100 million kelvin.
(i) What is meant by the term plasma in this context?
\qquad
\qquad
(ii) Name the method of confinement used for the hot plasma in the JET fusion reactor and explain why the plasma confinement is necessary.

Method of confinement
Explanation \qquad
\qquad
(iii) Why does the plasma need to have such a high temperature?
\qquad
\qquad

The JET reactor fuses deuterium and tritium, which are isotopes of hydrogen, in the reaction described by Equation 2.1.

$$
\begin{equation*}
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+Q \tag{Equation 2.1}
\end{equation*}
$$

Table 2.1

Particle symbol	Particle name	Particle mass
${ }_{1}^{2} \mathrm{H}$	Deuterium	2.014102 u
${ }_{1}^{3} \mathrm{H}$	Tritium	3.016049 u
${ }_{2}^{4} \mathrm{He}$	Helium-4	4.002603 u
${ }_{0}^{1} \mathrm{n}$	neutron	1.008665 u

(iv) Table 2.1 provides information on the particles involved in this fusion reaction. Use this information to find the quantity of energy Q released. Give your answer in MeV .

$$
Q=
$$

\qquad MeV

3 (a) Particle accelerators are used to investigate the structure of matter. They increase the speed of particles which are then made to collide with a suitable target particle. Fig. 3.1 illustrates the main features of a linear accelerator (linac). In this linac an electron beam enters tube A and travels through the four tubular electrodes shown. Alternate electrodes are connected to the same terminal of the a.c. supply.

Fig. 3.1
(i) In the terminals (the circles) of the AC supply of Fig. 3.1, indicate

Examiner Only the polarity at the instant shown in Fig. 3.1 with the electron at the position shown between tube B and tube C .
Explain why you have indicated the polarity in this way.
\qquad
\qquad
\qquad
\qquad
(ii) Why is it necessary for the length of the tubular electrodes to increase?
\qquad
\qquad
(b) What is the change in electron kinetic energy, in joules, in the time it takes for an electron leaving A to emerge from D ? The a.c. supply to the electrodes is maintained at 200 kV .

Kinetic energy change $=$ \qquad J
(c) The Low Energy Antiproton Ring (LEAR) accelerator at CERN is able to produce anti-hydrogen atoms.
(i) Fig. 3.2 is a simple representation of normal hydrogen. In the boxes on Fig. 3.3, name the corresponding particles in the anti-hydrogen representation.

Fig. 3.2
Fig. 3.3
(ii) State one difference and one similarity between each corresponding pair of particles that make up the atoms in Fig. 3.2 and Fig. 3.3.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

(Questions continue overleaf)

4 The electron, the neutron and the proton are the sub-atomic particles that exist in ordinary matter.
(a) The neutron and proton belong to a class of particle called baryons. What do all baryons have in common that no other class of particle does?
\qquad
\qquad
(b) Below are equations representing two decays and a suggested reaction involving particles.

$$
\begin{aligned}
\mathrm{K}^{0} \rightarrow \pi^{+}+\pi^{-} & \text {Decay } 1 \\
\Lambda^{0} \rightarrow \mathrm{p}+\pi^{-} & \text {Decay } 2 \\
\mathrm{~K}^{-}+\mathrm{p} \rightarrow \pi^{+}+\pi^{-} & \text {Reaction } 1
\end{aligned}
$$

The table of Fig. 4.1 gives three quantum numbers for the particles in the equations.

Particle	Charge	Baryon No.	Strangeness
Kaon $\left(\mathrm{K}^{0}\right)$	0	0	+1
Kaon minus $\left(\mathrm{K}^{-}\right)$	-1	0	-1
pion-plus $\left(\pi^{+}\right)$	+1	0	0
pion-minus $\left(\pi^{-}\right)$	-1	0	0
Lambda $\left(\Lambda^{0}\right)$	0	+1	-1
Proton (p)	+1	+1	0

Fig. 4.1
(i) (1) Which of the two decays (if any) does not involve the strong interaction? Indicate your answer by placing a tick in the appropriate box.

Decay 1
Decay 2

Decays 1 and 2

Neither decay
(2) Explain your answer.
(ii) Explain why Reaction 1 is not possible.
\qquad
\qquad
(iii) Complete the Table 4.1 below showing the gauge boson and its associated force.

Table 4.1

Force	Gauge Boson
Strong	
	$\mathrm{W}^{+} \mathrm{W}^{-} \mathrm{Z}^{0}$
Gravitational	
	photon

5 In part (b)(i) of this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

Four Carbon Allotropes

Diamond, graphite, Buckminsterfullerene (buckyballs) and carbon nanotubes are four different forms of carbon. Although they are all made from the same basic carbon atom, their structures and properties vary enormously.
(a) Diamond is the only transparent form of carbon.

Calculate the speed of light in diamond, given its refractive index is 2.42

Speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$
(b) The repetitive structure of the buckyball was revealed using a
technique known as electron microscopy, which relies on the diffraction of an electron beam. Fig. 5.1 illustrates the structure deduced.

Fig. 5.1 , deduce.

(i) Explain why an electron diffraction pattern is achieved. Explain also why the electron wavelength must be similar to the separation of the carbon atoms in the buckyball.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(ii) The minimum separation of the carbon atoms is 0.10 nm . Calculate the speed of electrons if they are to have an associated wavelength of this magnitude.

Speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$
(c) Fig. 5.2 illustrates the structure and dimensions of a carbon nanotube of circular cross-section and diameter 1.2 nm and length $80 \mu \mathrm{~m}$.

Fig. 5.2
(i) Given that the Young Modulus for a nanotube is
$1.1 \times 10^{12} \mathrm{~Pa}$, calculate the tensile force that will cause a $0.15 \mu \mathrm{~m}$ increase in the length of this nanotube.

Force $=$ \qquad N
(ii) Calculate the strain energy in the nanotube when stretched by $0.15 \mu \mathrm{~m}$.
Assume the nanotube obeys Hooke's law.

Energy = \qquad J
(d) Graphite is a good electrical conductor under normal circumstances. An experiment was performed to see if it obeys Ohm's law.
The data was collected using the circuit in Fig. 5.3.
The voltage-current characteristic of a graphite rod is given in Fig. 5.4.

Fig. 5.3

Fig. 5.4
(i) On the circuit diagram of Fig. 5.3, label the milliammeter mA and the millivoltmeter mV .
(ii) Explain how Fig. 5.4 confirms that graphite is an ohmic conductor.
\qquad
\qquad
\qquad
(iii) Graphite has a resistivity of $7.8 \times 10^{-6} \Omega \mathrm{~m}$ and a charge carrier
density of $1.1 \times 10^{29} \mathrm{~m}^{-3}$. Calculate the drift speed of the electrons in a sample of graphite 80 mm in length when there is a voltage of 26 mV across it.

Electron drift speed $=$ \qquad ms^{-1}

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
permeability of a vacuum
permittivity of a vacuum
elementary charge the Planck constant
unified atomic mass unit mass of electron
mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall on
the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s} \\
& -2 \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:
Mechanics

Momentum-impulse relation

Power
Conservation of energy
$m v-m u=F t$
for a constant force
$P=F v$
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s$
for a constant force

Simple harmonic motion

Displacement

Velocity
Simple pendulum
Loaded helical spring
Medical physics
Sound intensity
level/dB
Sound intensity
difference/dB
Resolving power
$\sin \theta=\lambda / D$

Waves

Two-slit interference $\quad \lambda=a y / d$
Diffraction grating $\quad d \sin \theta=n \lambda$

Light

Lens formula

$$
1 / u+1 / v=1 / f
$$

Stress and Strain
Hooke's law
$F=k x$
Strain energy
$E=\langle F>x$ $\left(=\frac{1}{2} F x=\frac{1}{2} k x^{2}\right.$ if Hooke's law is obeyed)

Electricity

Potential divider

$$
V_{\mathrm{out}}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)
$$

Thermal physics

Average kinetic energy of a molecule
Kinetic theory

$$
\begin{aligned}
& \frac{1}{2} m<c^{2}>=\frac{3}{2} k T \\
& p V=\frac{1}{3} N m<c^{2}>
\end{aligned}
$$

Capacitors

Capacitors in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Capacitors in parallel $C=C_{1}+C_{2}+C_{3}$

Time constant
$\tau=R C$

Electromagnetism

Magnetic flux density due to current in
(i) long straight solenoid
$B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Alternating currents

A.c. generator

Particles and photons

Radioactive decay

Half life

$$
\begin{aligned}
& E=E_{0} \sin \omega t \\
& =\operatorname{BAN} \omega \sin \omega t
\end{aligned}
$$

Photoelectric effect $\quad \frac{1}{2} m v_{\max }^{2}=h f-h f_{0}$ de Broglie equation $\quad \lambda=h / p$

Particle Physics

Nuclear radius

