

Candidate Number
\qquad

ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2009

Physics

Assessment Unit AS 1

assessing
Module 1: Forces and Electricity
[ASY11]

TUESDAY 16 JUNE, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer all seven questions.

Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.
Quality of written communication will be assessed in question 5(a).
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Your attention is drawn to the Data and Formula Sheet which is inside this question paper.
You may use an electronic calculator.
You will need a ruler and protractor.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	

Total
Marks

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.

Answer all seven questions
1 (a) Physical quantities may be classified as vectors or scalars.
(i) Explain what is meant by a scalar quantity.
(ii) Six physical quantities are listed below. Indicate which of the physical quantities are vectors by placing a tick (\boldsymbol{V}) in the box corresponding to the quantity.

(b) State the two conditions for a body to be in equilibrium under the action of a number of coplanar forces.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad
(c) Two tugs are used to rescue a small ship which has lost engine power and is close to some rocks. The tugs just manage to hold the ship stationary against a current producing a force of 250 kN on the ship as shown in Fig. 1.1.

Tug A develops a force of 200 kN in the direction shown on Fig. 1.1.
Find, by scale diagram or calculation, the magnitude and direction θ of the force F developed by tug B if the three forces acting on the ship are in equilibrium.

Fig. 1.1
$F=$ \qquad kN
$\theta=$ \qquad -

2 (a) (i) State how to calculate the moment of a force about a point.
\qquad
\qquad
\qquad
(ii) Name the SI unit of the moment of a force.
\qquad
(b) Fig. 2.1 shows a stationary wheelbarrow being supported by a gardener who applies a vertical force of 50 N at the end of the handles. The weight of the wheelbarrow and contents is 175 N . The force applied to the handles acts at a horizontal distance of 1.40 m from the point of contact of the wheel with the ground.

Fig. 2.1
(i) Another force acts on the wheelbarrow at the wheel. State the magnitude and direction of this force.

Magnitude $=$ \qquad N

Direction \qquad
(ii) Calculate the horizontal distance from the centre of gravity to the end of the handle.

Distance $=$ \qquad m

3 A rugby ball is kicked over the crossbar between the goal-posts from a position 25 m directly in front of the posts, as shown in Fig. 3.1.

Fig. 3.1
The ball reaches maximum height H above the ground at a position vertically above the crossbar. It takes 1.4 seconds to reach this maximum height. Assume air resistance is negligible.
(a) (i) Calculate the horizontal component of velocity at the instant the ball leaves the kicker's foot.

Horizontal component $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$
(ii) Calculate the vertical component of velocity at the instant the ball is kicked.
\qquad $\mathrm{m} \mathrm{s}^{-1}$
170nzontur

Horizont
remor
\qquad
(b) (i) Use your answers to part (a) to find the magnitude of the initial velocity after the ball is kicked.

Velocity $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$
(ii) Find the angle above the horizontal at which the ball is kicked.

Angle = \qquad ${ }^{\circ}$
(iii) Find the maximum height H reached by the ball.
$H=$ \qquad m

4 (a) (i) Define the momentum of a body.
(ii) Define the impulse of a force.
\qquad
(b) An oxygen molecule of mass $5.31 \times 10^{-26} \mathrm{~kg}$ has speed of $480 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the magnitude of the momentum of the molecule and give an appropriate SI unit.

Magnitude \qquad
SI unit \qquad
(ii) The molecule strikes a wall normally and rebounds with the same speed, also normally to the wall. Use the impulse-momentum relation to calculate the magnitude of the impulse the wall gives to the molecule.

Fig. 4.1

Impulse $=$ \qquad SI units You will be assessed on the quality of your written communication.

5 (a) Terms often used in describing an electrical power source, such as a battery, are terminal potential difference and electromotive force (e.m.f.). Write a short explanation of these terms and when it is appropriate to use them.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(b) (i) What is meant by the internal resistance of an electrical power source?
\qquad
\qquad
(ii) Obtain the relationship between the electromotive force E, the terminal potential difference V and the internal resistance r when a power source is used to provide a current I to an external resistor of resistance R.
$E-V=$
(iii) State the necessary condition for an electrical power source to supply maximum power to an external load resistance.
\qquad

6 (a) A battery of e.m.f. 12 V and negligible internal resistance is connected to a resistor network as shown in the circuit diagram in Fig. 6.1.

Fig. 6.1
(i) Show clearly that the resistance of the single equivalent resistor that could replace the four resistors between the points A and B is 31Ω.
(ii) The current delivered by the battery is 300 mA . Calculate the total circuit resistance.

Total resistance $=$ \qquad Ω
(iii) Hence find the value of the resistance of the resistor R .

Resistance of $\mathrm{R}=$ \qquad Ω
(iv) Find the current in the 48Ω resistor.

Current $=$ \qquad mA
(b) A $0-200 \mu \mathrm{~A}$ microammeter is to be modified to measure currents up to 1.00 mA by the addition of a shunt. The microammeter has internal resistance 600Ω.
(i) Draw a labelled circuit diagram of the arrangement, showing how the shunt is attached to the microammeter.
(ii) Calculate the resistance of the shunt needed.

Shunt resistance $=$ \qquad Ω

7 A potential divider circuit is shown in Fig. 7.1. R_{x} is a fixed resistor of resistance R_{x} and R_{y} is a variable resistor of resistance R_{y}. The combined resistance of R_{x} and R_{y} is 500Ω and the supply voltage is 25.0 V . The output voltage V_{o} is obtained between the terminals A and B.

Fig. 7.1
(a) The maximum value of V_{o} is 15.0 V when the sliding contact A is at the position shown.
Calculate the resistance of R_{x} and the resistance of R_{y}.

$$
\begin{aligned}
& R_{\mathrm{x}}=\square \Omega \\
& R_{\mathrm{y}}=\square
\end{aligned}
$$

(b) The position of the sliding contact A is adjusted so that the output is 5.0 V . A load of resistance 300Ω is then connected to the terminals AB.
Calculate the new value of V_{o}.
$V_{\mathrm{o}}=$ \qquad V

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants
speed of light in a vacuum permeability of a vacuum permittivity of a vacuum
elementary charge the Planck constant unified atomic mass unit mass of electron mass of proton molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{27} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Momentum-impulse
relation
Power
Conservation of
energy
Simple harmonic motion
Displacement
Velocity
Simple pendulu
Loaded helical
Medical physics

Sound intensity level $/ \mathrm{dB}$	$=10 \lg _{10}\left(I / I_{0}\right)$
Sound intensity difference/dB	$=10 \lg _{10}\left(I_{2} / I_{1}\right)$
Resolving power	$\sin \theta=\lambda / D$

Waves

Two-slit interference $\quad \lambda=a y / d$
Diffraction grating $\quad d \sin \theta=n \lambda$

Light

Lens formula

$$
1 / u+1 / v=1 / f
$$

Stress and Strain

Hooke's law
$F=k x$
Strain energy
$E=\langle F>x$
($=\frac{1}{2} F x=\frac{1}{2} k x^{2}$
if Hooke's law is obeyed)

Electricity

Potential divider

$$
V_{\text {out }}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)
$$

Thermal physics

Average kinetic

$$
\frac{1}{2} m<c^{2}>=\frac{3}{2} k T
$$

energy of a molecule
Kinetic theory

$$
p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle
$$

Capacitors

Capacitors in series
Capacitors in parallel $C=C_{1}+C_{2}+C_{3}$

Time constant

$$
\tau=R C
$$

Electromagnetism

Magnetic flux density due to current in
(i) long straight solenoid
$B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor
$B=\frac{\mu_{0} I}{2 \pi a}$

Alternating currents

A.c. generator
$E=E_{0} \sin \omega t$
$=B A N \omega \sin \omega t$

Particles and photons

Radioactive decay

$$
\begin{aligned}
& A=\lambda N \\
& A=A_{0} \mathrm{e}^{-\lambda t}
\end{aligned}
$$

Half life
$t_{\frac{1}{2}}=0.693 / \lambda$
Photoelectric effect
$\frac{1}{2} m v_{\text {max }}^{2}=h f-h f_{0}$
de Broglie equation
$\lambda=h / p$

Particle Physics

Nuclear radius

$$
r=r_{0} A^{\frac{1}{3}}
$$

