

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009

Physics

Assessment Unit AS 1 assessing Module 1: Forces and Electricity

[ASY11]

TUESDAY 16 JUNE, AFTERNOON

Centre	Number
000000	1

71

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Answer **all seven** questions.

Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.

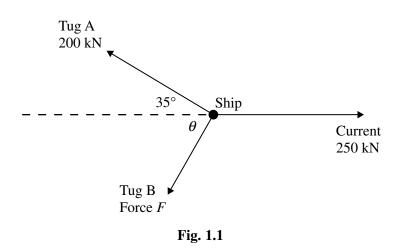
Quality of written communication will be assessed in question 5(a). Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Your attention is drawn to the Data and Formula Sheet which is inside this question paper.

You may use an electronic calculator.

You will need a ruler and protractor.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
Total		

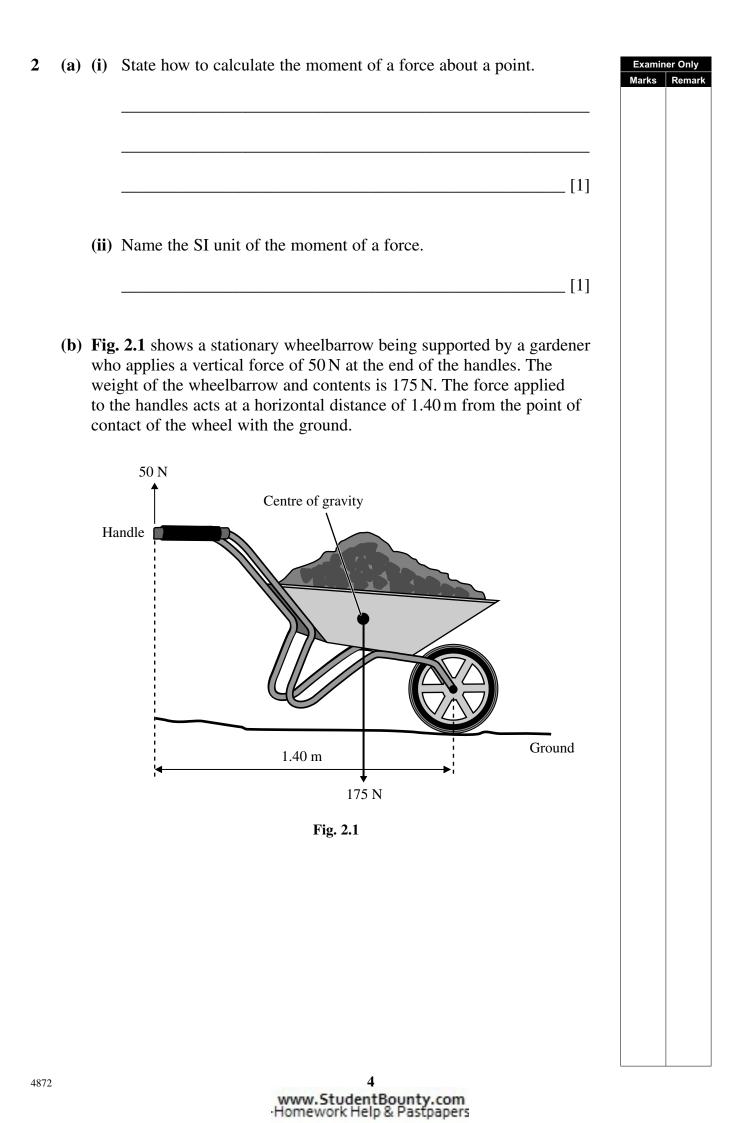

Total Marks

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.					Examiner Only Marks Remark		
			А	nswer all se v	ven questions		
1	(a)	Phy	vsical quantities n	nay be classi	fied as vectors or scalars .		
		(i)	Explain what is	meant by a s	scalar quantity.		
						[1]	
		(ii)		ies are vecto	sted below. Indicate which rs by placing a tick () in y.		
			Kinetic energy		Mass		
			Displacement		Force		
			Momentum		Power	[2]	
		2				[2]	
						[-]	
					-		

(c) Two tugs are used to rescue a small ship which has lost engine power and is close to some rocks. The tugs just manage to hold the ship stationary against a current producing a force of 250 kN on the ship as shown in Fig. 1.1.

Tug A develops a force of 200 kN in the direction shown on Fig. 1.1.

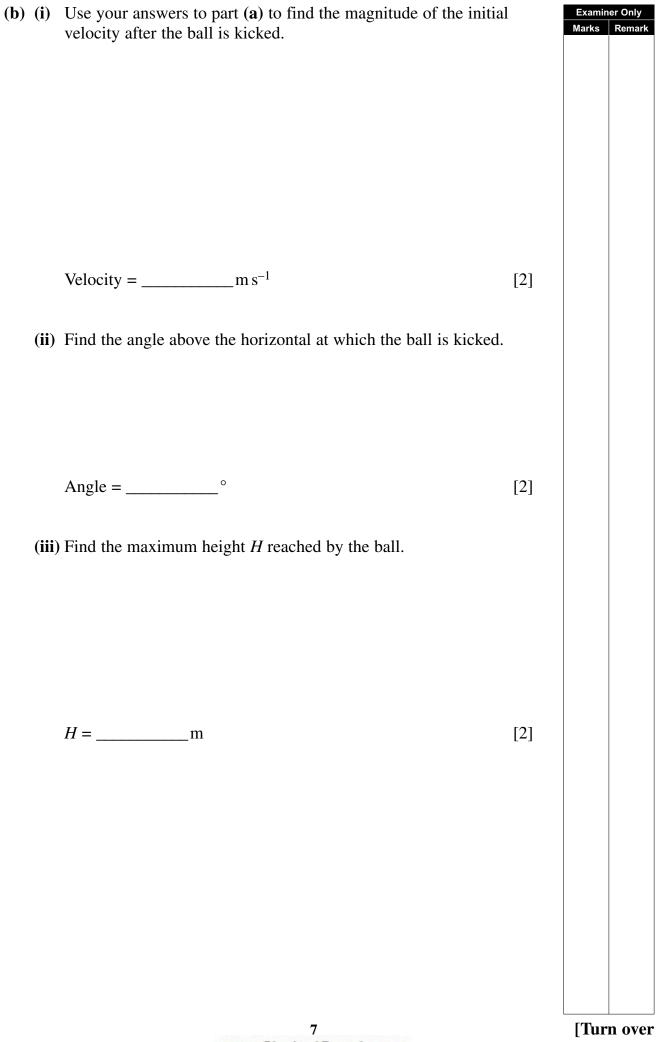
Find, by scale diagram or calculation, the magnitude and direction θ of the force F developed by tug B if the three forces acting on the ship are in equilibrium.


$$F =$$
_____kN
 $\theta =$ _____°

[5]

[Turn over

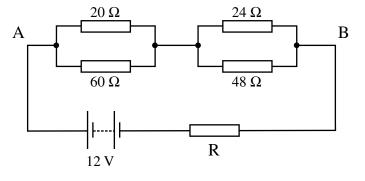
Examiner Only Marks


Rem

(i)	(i) Another force acts on the wheelbarrow at the wheel.State the magnitude and direction of this force.				
	Magnitude =N				
	Direction	[2]			
(ii)	Calculate the horizontal distance from the centre of gravity to the end of the handle.	ne			
	Distance =m	[3]			
	5		[Tur	n over	

A rugby ball is kicked over the crossbar between the goal-posts from a Examiner Only Re position 25 m directly in front of the posts, as shown in Fig. 3.1. Ball Η Crossbar Goal line Ground 25 m Fig. 3.1 The ball reaches maximum height H above the ground at a position vertically above the crossbar. It takes 1.4 seconds to reach this maximum height. Assume air resistance is negligible. (a) (i) Calculate the horizontal component of velocity at the instant the ball leaves the kicker's foot. Horizontal component = $__m s^{-1}$ [2] (ii) Calculate the vertical component of velocity at the instant the ball is kicked. Vertical component = $__m s^{-1}$ [3]

3



4	(a)	(i)	Define the momentum of a body.	Exam Marks	iner Only Remark
				[1]	
		(ii)	Define the impulse of a force.	[1]	
				[1]	
	(b)	An	oxygen molecule of mass 5.31×10^{-26} kg has speed of $480 \mathrm{m s^{-1}}$		
		(i)	Calculate the magnitude of the momentum of the molecule and give an appropriate SI unit.		
			Magnitude		
			SI unit	[2]	
		(ii)	The molecule strikes a wall normally and rebounds with the sar speed, also normally to the wall. Use the impulse–momentum relation to calculate the magnitude of the impulse the wall gives the molecule.		
			Wall		
			Molecule ⊙		
			Fig. 4.1		
			Impulse =SI units	[2]	
4872			8		

		ropriate in this question you should answer in continuous pr assessed on the quality of your written communication.	rose.	Examiner Onl Marks Rema
(a)	batt (e.r	ms often used in describing an electrical power source, such as tery, are terminal potential difference and electromotive force n.f.). Write a short explanation of these terms and when it is propriate to use them.		
			_[2]	
	Qua	ality of written communication	[1]	
(b)	(i)	What is meant by the internal resistance of an electrical power source?	er	
			_[1]	
	(ii)	Obtain the relationship between the electromotive force E , the terminal potential difference V and the internal resistance r wh power source is used to provide a current I to an external resist of resistance R .		
		<i>E</i> – <i>V</i> =	[2]	
	(iii)	State the necessary condition for an electrical power source to supply maximum power to an external load resistance.		
			_[1]	

[Turn over

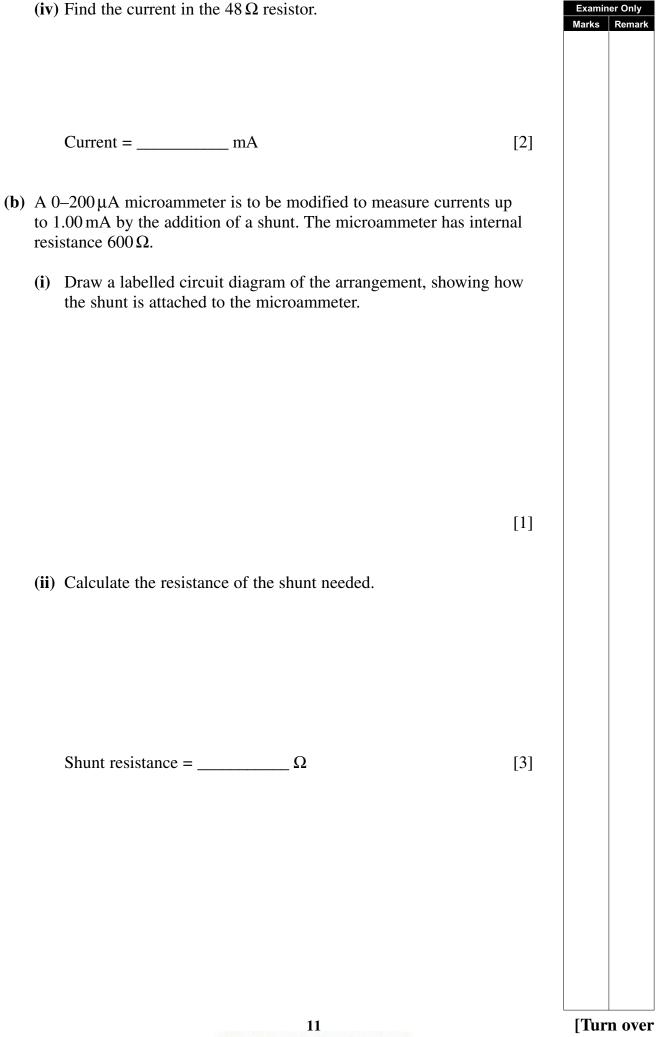
(a) A battery of e.m.f. 12 V and negligible internal resistance is connected 6 to a resistor network as shown in the circuit diagram in Fig. 6.1.

(i) Show clearly that the resistance of the single equivalent resistor that could replace the four resistors between the points A and B is 31 **Ω**.

Examiner Only Marks

Rer

(ii) The current delivered by the battery is 300 mA. Calculate the total circuit resistance.


Total resistance = $___ \Omega$

(iii) Hence find the value of the resistance of the resistor R.

Resistance of R = _____ Ω

[1]

[2]

4872

7 A potential divider circuit is shown in **Fig. 7.1**. R_x is a fixed resistor of resistance R_x and R_y is a variable resistor of resistance R_y . The combined resistance of R_x and R_y is 500 Ω and the supply voltage is 25.0 V. The output voltage V_o is obtained between the terminals A and B.

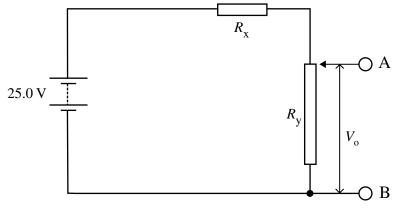
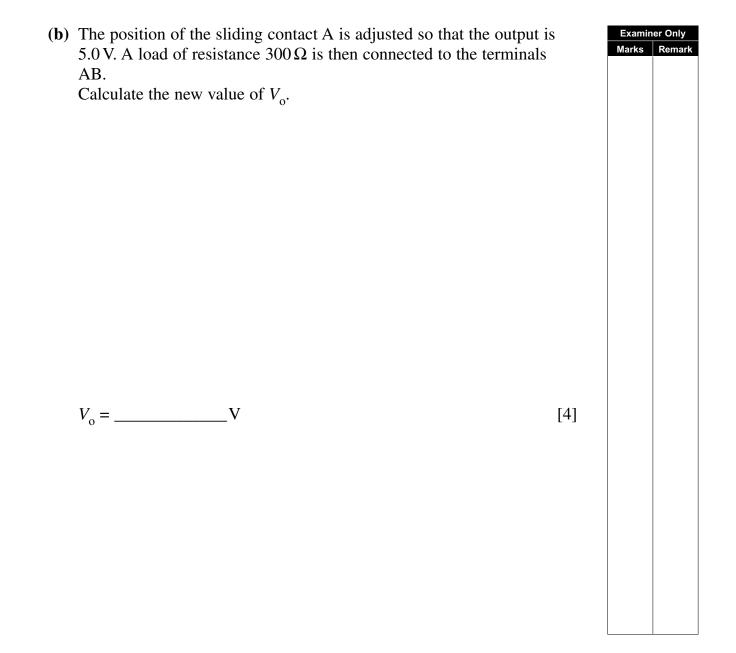


Fig. 7.1

(a) The maximum value of V_0 is 15.0 V when the sliding contact A is at the position shown. Calculate the resistance of R_x and the resistance of R_y .

$$R_{\rm x} = ___ \Omega$$


$$R_{\rm y} = ___ \Omega$$

[3]

Examiner Only

Rema

Marks

THIS IS THE END OF THE QUESTION PAPER

Data and Formulae Sheet

Values of constants

speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
permeability of a vacuum	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H}\mathrm{m}^{-1}$
permittivity of a vacuum	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$ $\left(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{F^{-1} m}\right)$
elementary charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass unit	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$
mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J} \mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
acceleration of free fall on the Earth's surface	$g = 9.81 \text{ m s}^{-2}$
electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Momentum-impulse relation	mv - mu = Ft for a constant force
Power	P = Fv
Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force

Simple harmonic motion

Displacement	$x = x_0 \cos \omega t$ or	`
	$x = x_0 \sin \omega t$	r
Velocity	$v = \pm \omega \sqrt{{x_0}^2 - x^2}$	E
Simple pendulum	$T=2\pi\sqrt{l/g}$	
Loaded helical spring	$T=2\pi\sqrt{m/k}$	
Medical physics		
Sound intensity level/dB	$= 10 \lg_{10}(I/I_0)$	(
Sound intensity difference/dB	$= 10 \lg_{10}(I_2/I_1)$	A
Resolving power	$\sin \theta = \lambda/D$	
Waves		Pe
Two-slit interference	$\lambda = ay/d$	
Diffraction grating	$d\sin\theta = n\lambda$	
Light		
Lens formula	1/u + 1/v = 1/f	
Stress and Strain		0
Hooke's law	F = kx	Pa
Strain energy	$E = \langle F \rangle x$ (= $\frac{1}{2}Fx = \frac{1}{2}kx^2$ if Hooke's law is obeyed)	
Electricity		
Potential divider	$V_{\rm out} = R_1 V_{\rm in} / (R_1 + R_2)$	
4873.02		

| Thermal physics

r ner mar physics	
Average kinetic energy of a molecule	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$
Kinetic theory	$pV = \frac{1}{3}Nm < c^2 >$
Capacitors	
Capacitors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$
Capacitors in parallel	$C = C_1 + C_2 + C_3$
Time constant	$\tau = RC$
Electromagnetism	
Magnetic flux density due to current in	
(i) long straight solenoid	$B = \frac{\mu_0 NI}{l}$
(ii) long straight conductor	$B = \frac{\mu_0 I}{2\pi a}$
Alternating currents	
A.c. generator	$E = E_0 \sin \omega t$ = BAN\omega \sin \omega t
Particles and photons	
Radioactive decay	$A = \lambda N$ $A = A_0 e^{-\lambda t}$
Half life	$t_{\frac{1}{2}} = 0.693/\lambda$
Photoelectric effect	$\frac{1}{2}mv_{\max}^2 = hf - hf_0$
de Broglie equation	$\lambda = h/p$
Particle Physics	
Nuclear radius	$r = r_0 A^{\frac{1}{3}}$