

Candidate Number

Physics

Assessment Unit AS 2

assessing
Module 2: Waves and Photons
[ASY21]

FRIDAY 19 JUNE, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all eight questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60 .
Quality of written communication will be assessed in question 4.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

BLANK PAGE

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.

Answer all eight questions

1 Electromagnetic waves have wavelengths in the range from about $10^{-14} \mathrm{~m}$ to about $10^{4} \mathrm{~m}$ and form a spectrum. The spectrum is divided into seven regions. Waves within a region have common properties. For example, visible light is that region of the spectrum detected by the eye.
(a) Name the seven regions of the electromagnetic spectrum in order of decreasing wavelength. Answer in the spaces provided.

\qquad Decreasing wavelength
(b) State a typical wavelength for visible light.

Wavelength $=$ \qquad
(c) An electromagnetic wave from a different region of the spectrum has a frequency of 620 GHz . What is its wavelength if it is travelling in a vacuum?

Wavelength $=$ \qquad m

2 Snell's law of refraction states:

The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant for any two transparent materials.

Describe an experiment to verify Snell's law when the transparent materials are air and glass.
In your description you should:
(a) draw a labelled diagram of the apparatus and its arrangement,
(b) describe how the apparatus is used to obtain the angles of incidence and refraction required.
(a) Labelled diagram
(b) Use of apparatus to obtain angles of incidence and refraction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The data may be analysed by drawing a suitable graph.
(i) Label the axes of Fig 2.1 and sketch this graph. Label it $\mathbf{1}$.

Fig. 2.1
(ii) On Fig 2.1 draw a second graph to show the effect of repeating the experiment with a material of lower refractive index than glass. Label this graph 2.

3 The graphical representation of a standing wave on a stretched string is shown in Fig. 3.1.

Fig. 3.1
(a) Which mode of vibration (resonance vibration) is represented in Fig. 3.1?

Mode of vibration $=$
(b) On Fig. 3.1, clearly mark the position of one antinode (label this A).
(c) The distance between two consecutive antinodes is 0.08 m . What is the wavelength of the standing wave?

Wavelength $=$ \qquad m
(d) On Fig. 3.2, draw the fundamental or first mode of vibration. The original string has been drawn for you.

Original string

Fig. 3.2
.
(e) F is the ratio defined by Equation 3.1 and W is the ratio defined by Equation 3.2.
$F=\frac{\text { Frequency of first mode of vibration }}{\text { Frequency of mode of vibration in Fig. 3.1 }}$
$W=\frac{\text { Wavelength of mode of vibration in Fig. 3.1 }}{\text { Wavelength of first mode of vibration }}$
(i) State the value of F.

$$
F=
$$

(ii) State the value of W.

$$
\begin{equation*}
W= \tag{1}
\end{equation*}
$$

\qquad

4 (a) Explain what is meant by the term diffraction.
\qquad
\qquad
\qquad
(b) Fig. 4.1 is a scale diagram showing parallel wavefronts approaching an aperture. Complete Fig. 4.1 by carefully drawing four wavefronts after they have passed through the aperture.

Fig. 4.1
(c) In terms of diffraction, explain why people can hear a conversation through an open door even when they cannot see the people talking.
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(c) through an open door even when they cannot see the people talking

BLANK PAGE

(Questions continue overleaf)

5 An experiment is conducted to measure the speed of sound in air using a resonance tube and tuning forks. The frequency of each tuning fork is recorded and the corresponding tube length at the first position of resonance measured. The data are recorded in Table 5.1.

Table 5.1

Frequency $/ \mathrm{Hz}$	256	288	320	456	512
Tube length $/ \mathrm{m}$	0.312	0.277	0.258	0.186	0.166
$\left(\frac{1}{\text { tube length }}\right) / \mathrm{m}^{-1}$					

(a) Calculate the values of $1 /$ (tube length) and complete the row in Table 5.1.
Frequency/Hz

Fig. 5.1
(b) On the axes of Fig. $\mathbf{5 . 1}$ plot a graph of frequency against $\frac{1}{\text { tube length }}$ and draw a best-fit line.
(c) Measure the gradient of your graph and state the unit in which it is measured.

Gradient $=$

Unit $=$
(d) Use the gradient to calculate the speed of sound in air.

Speed $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

6 A polished zinc plate is illuminated with ultraviolet radiation of frequency $6.00 \times 10^{16} \mathrm{~Hz}$, as shown in Fig. 6.1.
(a) What is a photon?
\qquad
\qquad
(b) Calculate the energy of a photon of the ultraviolet radiation.

Energy = \qquad J
(c) Explain what is meant by the term photoelectric emission and state the conditions under which it can occur for the zinc plate illuminated by the ultraviolet radiation.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

(Questions continue overleaf)

7 The term 'laser' stands for Light Amplification by the Stimulated Emission of Radiation.

Fig. 7.1 illustrates the electron arrangement within the atoms of a laser before it has been switched on. Most of the electrons are in their ground state with an occasional electron in an excited state.

Excited state E_{1}

Ground state E_{0}

Fig. 7.1
(a) (i) On Fig. 7.2 draw a possible electron arrangement when the laser is switched on.

Excited state E_{1}

Ground state E_{0}

Fig. 7.2
(ii) What name is given to this situation?

Name
(b) Spontaneous emission occurs when an electron randomly falls to the ground state. What causes the electron to fall due to stimulated emission?
(c) Laser eye surgery uses a computer-controlled excimer laser. One such laser has argon fluoride as the lasing material. It produces electromagnetic radiation of wavelength 193 nm .

Calculate the energy of an electron's excited state if it relaxes to a state with an energy of -9.18 eV and emits radiation of wavelength 193 nm as a result.

Energy \qquad eV

8 The de Broglie formula is quoted in your Data and Formulae Sheet as Equation 8.1.

$$
\lambda=\frac{h}{p}
$$

Equation 8.1
(a) What does each of the terms represent?

$$
\begin{aligned}
& \lambda= \\
& h= \\
& p= \\
&
\end{aligned}
$$

(b) Fig. 8.1 is a graph of $1 / p$ against λ.

Fig. 8.1
State the numerical value for the gradient of the graph in Fig. 8.1. Include its units.

Gradient $=$

Unit \qquad
(c) Calculate the de Broglie wavelength of an electron moving at 90% of the speed of light in a vacuum.

Wavelength \qquad m

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants
speed of light in a vacuum permeability of a vacuum permittivity of a vacuum
elementary charge the Planck constant unified atomic mass unit mass of electron mass of proton molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall on the Earth's surface electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Momentum-impulse
relation
Power
Conservation of
energy
Simple harmonic motion
Displacement
Velocity
Simple pendulu
Loaded helical
Medical physics

Sound intensity level/dB	$=10 \lg _{10}\left(I / I_{0}\right)$
Sound intensity difference/dB	$=10 \lg _{10}\left(I_{2} / I_{1}\right)$
Resolving power	$\sin \theta=\lambda / D$

Waves

Two-slit interference $\quad \lambda=a y / d$
Diffraction grating $\quad d \sin \theta=n \lambda$

Light

Lens formula
$1 / u+1 / v=1 / f$
Stress and Strain
Hooke's law
$F=k x$
Strain energy
$E=\langle F>x$
($=\frac{1}{2} F x=\frac{1}{2} k x^{2}$
if Hooke's law is obeyed)

Electricity

Potential divider

$$
V_{\text {out }}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)
$$

Thermal physics

Average kinetic

$$
\frac{1}{2} m<c^{2}>=\frac{3}{2} k T
$$

energy of a molecule
Kinetic theory

$$
\left.p V=\frac{1}{3} N m<c^{2}\right\rangle
$$

Capacitors

Capacitors in series
Capacitors in parallel
Time constant

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
$$

Electromagnetism
Magnetic flux density due to current in
(i) long straight solenoid
$B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Alternating currents

A.c. generator
$E=E_{0} \sin \omega t$
$=B A N \omega \sin \omega t$

Particles and photons

Radioactive decay

$$
\begin{aligned}
& A=\lambda N \\
& A=A_{0} \mathrm{e}^{-\lambda t}
\end{aligned}
$$

Half life
$t_{\frac{1}{2}}=0.693 / \lambda$
Photoelectric effect
$\frac{1}{2} m v_{\text {max }}^{2}=h f-h f_{0}$
de Broglie equation
$\lambda=h / p$

Particle Physics

Nuclear radius

$$
r=r_{0} A^{\frac{1}{3}}
$$

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

