ADVANCED SUBSIDIARY General Certificate of Education 2009

Physics

Assessment Unit AS 2
 assessing
 Module 2: Waves, Photons and Medical Physics

[AY121]
FRIDAY 19 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 5. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Total Marks	

Marks

BLANK PAGE

1 Electromagnetic waves have wavelengths in the range from about $10^{-14} \mathrm{~m}$ to about $10^{4} \mathrm{~m}$ and form a spectrum. The spectrum is divided into seven regions. Waves within a region have common properties. For example, visible light is that region of the spectrum detected by the eye.
(a) Name the seven regions of the electromagnetic spectrum in order of decreasing wavelength. Answer in the spaces provided.

\qquad Decreasing wavelength
\qquad
(b) State a typical wavelength for visible light.

Wavelength $=$
(c) An electromagnetic wave from a different region of the spectrum has a frequency of 620 GHz . What is its wavelength if it is travelling in a vacuum?

Wavelength = \qquad m
\qquad

2 Snell's law of refraction states:

The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant for any two transparent materials.

Describe an experiment to verify Snell's law when the transparent materials are air and glass.
In your description you should:
(a) draw a labelled diagram of the apparatus and its arrangement,
(b) describe how the apparatus is used to obtain the angles of incidence and refraction required.
(a) Labelled diagram
(b) Use of apparatus to obtain angles of incidence and refraction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The data may be analysed by drawing a suitable graph.
(i) Label the axes of Fig. 2.1 and sketch this graph. Label it 1.

Fig. 2.1
(ii) On Fig. 2.1 draw a second graph to show the effect of repeating the experiment with a material of lower refractive index than glass.
Label this graph 2.

3 Fig. 3.1 illustrates a defect of vision for a person's eye.
The eye structure has been simplified. The eye is the circle and all bending occurs at its left-hand surface and the retina is the right-hand surface of the circle. Two rays from a distant object are shown undergoing refraction at the eye.

Fig. 3.1
(a) (i) Name the eye defect illustrated by Fig. 3.1.

> Defect =
\qquad
(ii) Name the type of lens that will correct this defect.

Lens type = \qquad
(b) (i) Calculate the focal length of the lens that will enable a person with a near point of 1.3 m to see clearly an object placed 0.25 m from the eye.

Focal length = \qquad m
(ii) What is the power of this lens?

Power $=$ \qquad D

BLANK PAGE

(Questions continue overleaf)

4 The graphical representation of a standing wave on a stretched string is shown in Fig. 4.1.

Fig. 4.1
(a) Which mode of vibration (resonance vibration) is represented in Fig. 4.1?

Mode of vibration $=$
(b) On Fig. 4.1, clearly mark the position of one antinode (label this A).
(c) The distance between two consecutive antinodes is 0.08 m . What is the wavelength of the standing wave?

Wavelength = \qquad m
(d) On Fig. 4.2, draw the fundamental or first mode of vibration.

The original string has been drawn for you.

Original string

Fig. 4.2
(e) F is the ratio defined by Equation 4.1 and W is the ratio defined by Equation 4.2.
$F=\frac{\text { Frequency of first mode of vibration }}{\text { Frequency of mode of vibration in Fig. 4.1 }}$
$W=\frac{\text { Wavelength of mode of vibration in Fig. } 4.1}{\text { Wavelength of first mode of vibration }}$
(i) State the value of F.

$$
F=
$$

(ii) State the value of W.

$$
\begin{equation*}
W= \tag{1}
\end{equation*}
$$

As appropriate in this question, you should answer in continuous prose. You will be assessed on the quality of your written communication.

5 (a) Explain what is meant by the term diffraction.
\qquad
\qquad
\qquad
(b) Fig. 5.1 is a scale diagram showing parallel wavefronts approaching an aperture. Complete Fig. $\mathbf{5 . 1}$ by carefully drawing four wavefronts after they have passed through the aperture.

Fig. 5.1
(c) In terms of diffraction, explain why people can hear a conversation through an open door even when they cannot see the people talking.
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication

BLANK PAGE

(Questions continue overleaf)

6 An experiment is conducted to measure the speed of sound in air using a resonance tube and tuning forks. The frequency of each tuning fork is recorded and the corresponding tube length at the first position of resonance measured. The data are recorded in Table 6.1.

Table 6.1

Frequency $/ \mathrm{Hz}$	256	288	320	456	512
Tube length $/ \mathrm{m}$	0.312	0.277	0.258	0.189	0.166
$\left(\frac{1}{\text { tube length }}\right) / \mathrm{m}^{-1}$					

(a) Calculate the values of $1 /($ tube length) and complete the row in Table 6.1.

Fig. 6.1
(b) On the axes of Fig. 6.1 plot a graph of frequency against
$\frac{1}{\text { tube length }}$ and draw a best-fit line.
(c) Measure the gradient of your graph and state the unit in which it is measured.

Gradient $=$

Unit $=$
(d) Use the gradient to calculate the speed of sound in air.

$$
\text { Speed }=\ldots \mathrm{ms}^{-1}
$$

\qquad

7 CT and MRI scanning are two imaging techniques available to doctors to view the inside of the body of a patient without surgery.
(a) (i) What does CT stand for?
CT =
\qquad
(ii) What does MRI stand for?

$$
\mathrm{MRI}=
$$

\qquad
(b) Both imaging techniques require the use of electromagnetic radiation in order to form an image of the body.

Name the region of the electromagnetic spectrum used in each technique.
\qquad
$M R I=$ \qquad
(c) CT requires the use of imaging equipment that has moving parts while MRI uses imaging equipment that has no moving parts. State the piece of imaging equipment that moves during a CT scan.
\qquad
\qquad
(d) A major component of MRI equipment must be cooled to very low temperatures.

Name the component and explain why it is necessary to maintain it at a very low temperature.

Component \qquad
Explanation \qquad
\qquad
\qquad
\qquad

8 A polished zinc plate is illuminated with ultraviolet radiation of frequency $6.00 \times 10^{16} \mathrm{~Hz}$, as shown in Fig. 8.1.

Fig. 8.1
(a) What is a photon?
\qquad
\qquad
(b) Calculate the energy of a photon of the ultraviolet radiation.

Energy = \qquad J
(c) Explain what is meant by the term photoelectric emission and state the conditions under which it can occur for the zinc plate illuminated by the ultraviolet radiation.
\qquad
\qquad
\qquad
\qquad

9 The term 'laser' stands for Light Amplification by the Stimulated Emission of Radiation.

Fig. 9.1 illustrates the electron arrangement within the atoms of a laser before it has been switched on. Most of the electrons are in their ground state with an occasional electron in an excited state.

Fig. 9.1
(a) (i) On Fig. 9.2 draw a possible electron arrangement when the laser is switched on.

Fig. 9.2
(ii) What name is given to this situation?

Name \qquad
(b) Spontaneous emission occurs when an electron randomly falls to the ground state. What causes the electron to fall due to stimulated emission?
(c) Laser eye surgery uses a computer-controlled excimer laser. One such laser has argon fluoride as the lasing material. It produces electromagnetic radiation of wavelength 193 nm .

Calculate the energy of an electron's excited state if it relaxes to a state with an energy of -9.18 eV and emits radiation of wavelength 193 nm as a result.

Energy eV

10 The de Broglie formula is quoted in your Data and Formulae Sheet as Equation 10.1.

$$
\lambda=\frac{h}{p}
$$

(a) What does each of the terms represent?

$$
\begin{aligned}
& \lambda= \\
& h= \\
& p=
\end{aligned}
$$

(b) Fig. 10.1 is a graph of $1 / p$ against λ.

Fig. 10.1
State the numerical value for the gradient of the graph in Fig. 10.1. Include its units.

Gradient =
Unit
(c) Calculate the de Broglie wavelength of an electron moving at 90% of the speed of light in a vacuum.

Wavelength \qquad m

Permission to reproduce all copyright material has been applied for In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on
the Earth's surface
electron volt
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s \quad$ for a constant force $F=k x$ (spring constant k)

Sound

Sound intensity level/dB
$=10 \lg _{10} \frac{I}{I_{0}}$
Waves
Two-source interference $\quad \lambda=\frac{a y}{d}$
Light
Lens formula
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
Magnification
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-\operatorname{Ir}($ E.m.f. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation
$\lambda=\frac{h}{p}$

