

Candidate Number

Physics

Assessment Unit AS 3A
assessing
Module 3A: Medical Physics
[ASY31]
FRIDAY 19 JUNE, MORNING

TIME

45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all five questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 45 .
Quality of written communication will be assessed in question 5.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Your attention is drawn to the Data and Formula Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
Total Marks	

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.

Answer all five questions
1 (a) (i) State the principal components of the eye responsible for focusing.
\qquad
\qquad
(ii) Describe how the eye forms sharp images of objects at different distances from it.
\qquad
\qquad
(b) The eye has a mechanism to control the amount of light entering it. Name the component responsible and describe how this control of light intensity is achieved.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) State the range of wavelengths detectable by the eye for a person with normal sight.

Range of wavelengths = \qquad nm to \qquad nm [1]
(ii) Outline how the eye discriminates between light of different colours in the full detectable range of wavelengths.
\qquad
\qquad
\qquad

2 (a) What is meant by the far point of the eye?
(b) (i) A person has a far point of 1.20 m and a near point of 0.15 m . What type of lens must be used for her to view clearly objects at infinity?
(ii) Calculate the power of the corrective lens for this eye to allow objects at infinity to be viewed clearly.

Power of corrective lens $=$ \qquad Unit \qquad
(iii) This person has an uncorrected near point of 0.15 m . What would be her near point when using the corrective lens in $\mathbf{b}(\mathbf{i i})$?

Near point distance $=$ \qquad m
\qquad

3 (a) (i) What is meant by the threshold of hearing?
\qquad
\qquad
(ii) Distinguish between the terms sound intensity and sound intensity level.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) During examinations, the sound intensity level in the hall is 37.0 dB . As candidates leave at the end of the examination, the intensity level rises to 76.0 dB .
Calculate the numerical factor by which the sound intensity increases.

Factor $=$

4 (a) On the axes of Fig 4.1, sketch a graph showing how the intensity response of the human ear varies with frequency. Label the vertical axis of your graph with appropriate numerical values.

Fig 4.1
(b) (i) State two effects of excessive noise on humans.
\qquad
\qquad
\qquad
(ii) State the minimum value of sound intensity level that constitutes excessive noise for humans.

Sound intensity level $=$ \qquad dB
(c) It is possible to buy additions to headphones that reduce background noise, for example traffic, so that the listener does not hear traffic noise with the music. Suggest one reason why these additions are encouraged by societies for the deaf and hard of hearing, and one reason why they might be discouraged by road safety bodies.
\qquad
\qquad
\qquad
\qquad

Where appropriate in this question, you should answer in continuous prose. You will be assessed on the quality of your written communication.

5 (a) A flexible endoscope contains two different bundles of optical fibres. One bundle is said to be coherent and the other bundle non-coherent.
(i) Explain the meaning of the term non-coherent in this context.
\qquad
\qquad
(ii) Explain the purpose of each type of bundle in the endoscope.
\qquad
\qquad
\qquad
\qquad
[
(b) Give an account of the general principles of magnetic resonance imaging (MRI). Your account should mention some of the problems associated with this technique, and the precautions taken when operating it.
\qquad
Quality of written communication

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants
speed of light in a vacuum permeability of a vacuum permittivity of a vacuum elementary charge the Planck constant unified atomic mass unit mass of electron mass of proton molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall on the Earth's surface electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{27} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}^{2}
\end{aligned}
$$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Momentum-impulse
relation
Power
Conservation of
energy
Simple harmonic motion
Displacement
Velocity
Simple pendulu
Loaded helical
Medical physics

Sound intensity level $1 / \mathrm{dB}$	$=10 \lg _{10}\left(I / I_{0}\right)$
Sound intensity difference $/ \mathrm{dB}$	$=10 \lg _{10}\left(I_{2} / I_{1}\right)$
Resolving power	$\sin \theta=\lambda / D$

Waves

Two-slit interference $\quad \lambda=a y / d$
Diffraction grating $\quad d \sin \theta=n \lambda$

Light

Lens formula

$$
1 / u+1 / v=1 / f
$$

Stress and Strain

Hooke's law
$F=k x$
Strain energy
$E=\langle F>x$
($=\frac{1}{2} F x=\frac{1}{2} k x^{2}$
if Hooke's law is obeyed)

Electricity

Potential divider

$$
V_{\text {out }}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)
$$

Thermal physics

Average kinetic

$$
\frac{1}{2} m<c^{2}>=\frac{3}{2} k T
$$

energy of a molecule
Kinetic theory

$$
p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle
$$

Capacitors

Capacitors in series
Capacitors in parallel
Time constant

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
$$

Electromagnetism
Magnetic flux density due to current in
(i) long straight solenoid
$B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Alternating currents

A.c. generator
$E=E_{0} \sin \omega t$
$=B A N \omega \sin \omega t$

Particles and photons

Radioactive decay

$$
\begin{aligned}
& A=\lambda N \\
& A=A_{0} \mathrm{e}^{-\lambda t}
\end{aligned}
$$

Half life
$t_{\frac{1}{2}}=0.693 / \lambda$
Photoelectric effect
$\frac{1}{2} m v_{\text {max }}^{2}=h f-h f_{0}$
de Broglie equation
$\lambda=h / p$

Particle Physics

Nuclear radius

$$
r=r_{0} A^{\frac{1}{3}}
$$

