ADVANCED SUBSIDIARY

Physics

Assessment Unit AS 2
 assessing
 Module 2: Waves, Photons and Medical Physics

[AY121]
WEDNESDAY 28 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Quality of written communication will be assessed in question 5. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number Marks 1 2 3 4 5 6 7 Total	

1 (a) (i) Waves may be categorised as either longitudinal or transverse. Complete Table 1.1 below to indicate the category of the waves listed and a typical wavelength of each wave.

Table 1.1

Wave	Wave Category	Typical wavelength/m
Radio waves		
Visible light waves		

(ii) Sound waves have a speed in air of $340 \mathrm{~m} \mathrm{~s}^{-1}$. The audio range of frequencies for the hearing of an elderly person may be taken as from 40 Hz to 12 kHz .

1. State the category of waves represented by sound waves.

Category = \qquad
2. Calculate the maximum wavelength of the sound wave in this audio range.

Maximum wavelength = \qquad m
(iii) A tuning fork emits a continuous sound wave in air.

On Fig. 1.1 below, sketch a graph to show the displacement d of a particle of air against the distance x from the tuning fork for at least two cycles of the pure sound emitted.
Label the axes of your graph and mark accurately the amplitude a, and the wavelength λ of the wave.
\qquad

Fig. 1.1
(b) A wave of frequency 50.0 Hz travels along a stretched string at $40.0 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the phase difference between two points on the string which are 0.30 m apart.

Phase difference $=$ \qquad \circ

2 (a) (i) A ray of light is incident on one side of a rectangular glass block as shown in Fig. 2.1. On Fig. 2.1, sketch the path of the ray of light through the glass block and show how it emerges from the opposite side. Label clearly the angle of incidence i and the angle of refraction r, where the ray enters the glass block.

Fig. 2.1
(ii) Assume that an experiment has been carried out to provide a
range of values of angles of incidence and the corresponding angles of refraction.
Explain how these results may be used to determine the refractive index of the glass by a graphical method.
\qquad
\qquad
\qquad
\qquad
(b) A ray of light enters a medium of refractive index 1.39 at an angle θ as shown in Fig. 2.2. The ray is refracted inside the medium and travels to the upper surface where it is incident at the critical angle C of the medium.

Fig. 2.2
(i) Describe what happens to the ray at the upper surface. What would occur if another ray met the upper surface at an angle greater than the critical angle?
\qquad
\qquad
\qquad
(ii) Calculate the critical angle of the medium.

Critical angle = \qquad ${ }^{\circ}$
(iii) Calculate the magnitude of the incident angle θ.

Angle $\theta=$ \qquad \circ

3 (a) Fig. 3.1 shows an object OA placed on the principal axis of a lens. An upright, diminished, virtual image of this object is produced by the lens.
On Fig. 3.1, draw a suitable lens to produce this image.
On the diagram, label the type of lens drawn and mark clearly the focal points of the lens. Draw two rays from the point A of the object to locate the image and label it IB. Indicate the position of the eye to view the image.

Fig. 3.1
(b) (i) Complete Fig. 3.2 to illustrate how rays from an object at infinity would be refracted by the eye of a person with the vision defect called myopia.

Fig. 3.2
(ii) Complete Fig. 3.3 below to illustrate how this defect may be corrected using an appropriate lens.

Fig. 3.3
(iii) A person suffering from long sight can only see objects clearly at distances 35.0 cm to infinity from his eyes.
State the type of lens and calculate its focal length to correct his least distance of distinct vision to 25.0 cm .

Type of lens = \qquad
Focal length = \qquad cm
(iv) Find the power of this correcting lens.

Power = \qquad D

4 (a) (i) The upper graph in Fig. 4.1 shows a progressive wave S_{1}. On the lower set of axes, sketch a graph for a second wave S_{2} which, when superposed with S_{1}, gives complete destructive interference at the meeting point.

Fig. 4.1
(ii) Complete constructive interference between two waves is another case of the application of the principle of superposition. State the condition for complete constructive interference.
\qquad
\qquad
(b) (i) In a Young's slits interference experiment, y is the separation between two consecutive bright or dark fringes in the interference pattern obtained.
On Fig. 4.2, sketch graphs to show the relationship between y and

1. the wavelength λ of the light used,
2. the separation a of the slits.

In each instance, all quantities remain constant except the variables under consideration.

Fig. 4.2
(ii) A Young's slits experiment is carried out using light of wavelength 589 nm . An interference pattern is obtained on a screen which is 1.30 m from the slits.

The spacing between the centre of a dark fringe of the pattern and the centre of the adjacent bright fringe on the screen is 0.021 mm.

Calculate the separation of the slits.

Slit separation $=$ \qquad mm

5 In parts (a) and (b)(ii) of this question you should answer in continuous prose. You will be assessed on the quality of your written communication.
(a) Describe the structure of the components of a flexible endoscope.

The physical principles of optical fibres should not be described.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) An ultrasonic A-scan uses a single pulse. State the typical time duration of such a pulse and state a typical frequency range used for the signal.

Time duration \qquad $\mu \mathrm{s}$

Frequency range \qquad MHz to \qquad MHz
(ii) Describe an ultrasonic A-scan and indicate the information it yields.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) State the main difference between the information obtained from an ultrasonic B-scan compared to that of an A-scan.
\qquad
\qquad

6 (a) (i) On Fig. 6.1 sketch a graph to show the relationship between the energy E of a photon and its frequency f.

Fig. 6.1
(ii) Is it correct to state the speed of a photon never varies, it is always constant? Explain your answer.
\qquad
\qquad
(b) Explain qualitatively the meaning of the term work function of a metal surface.
\qquad
\qquad
\qquad
\qquad
(c) An electron in an atom undergoes a transition from an energy level of -0.53 eV to a level of -3.39 eV . Calculate the frequency of this electromagnetic radiation.

Frequency = \qquad Hz

7 (a) Light is said to have a wave-particle duality. Name two experiments, one which illustrates light behaviour as a wave and the other as a particle. In each case state briefly the experimental evidence which supports the relevant classification of behaviour.

Wave

\qquad
\qquad
\qquad
\qquad
Particle
\qquad
\qquad
\qquad
\qquad
(b) An electron in the ground state in a hydrogen atom may be considered to move in a circular orbit of diameter $1.08 \times 10^{-10} \mathrm{~m}$. The wavelength associated with this electron is equal to the circumference of the orbit. Calculate the speed of the electron to satisfy this condition.
\qquad $\mathrm{m} \mathrm{s}^{-1}$

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GCE Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
elementary charge
the Planck constant
mass of electron
mass of proton
acceleration of free fall on
the Earth's surface
electron volt
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$e=1.60 \times 10^{-19} \mathrm{C}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy
Hooke's Law

Sound intensity level/dB $\quad=10 \lg _{10} \frac{I}{I_{0}}$

Two-source interference $\quad \lambda=\frac{a y}{d}$
Light
Lens formula
Magnification
$\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
$m=\frac{v}{u}$

Electricity

Terminal potential difference
Potential divider
$V=E-\operatorname{Ir}($ E.m.f. E; Internal Resistance r)
$V_{\text {out }}=\frac{R_{1} V_{\text {in }}}{R_{1}+R_{2}}$

Particles and photons

de Broglie equation
$\lambda=\frac{h}{p}$

