

Candidate Number

ADVANCED SUBSIDIARY (AS)
General Certificate of Education January 2009

Physics

Assessment Unit AS 2
assessing
Module 2: Waves and Photons
[ASY21]

TUESDAY 27 JANUARY, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.
Quality of written communication will be assessed in question 3(a).
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.
You may use an electronic calculator.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	

Total
Marks

If you need the values of physical constants to answer any questions in this paper, they may be found on the Data and Formulae Sheet.

Answer all seven questions

1 (a) A wave of fixed velocity passes along a stretched string.
Fig. 1.1 shows a graph of the displacement d of a particle of the string against time t.

Fig. 1.1
(i) Describe the direction of the particle's displacement relative to the velocity of the wave.
\qquad
Hence state the type of wave on the string.
Type of wave:
(ii) Determine the amplitude of the wave.

Amplitude $=$ \qquad mm
(iii) Determine the frequency of the wave.

Frequency $=$ \qquad Hz
Fry
(iv) The velocity of the wave is $80.0 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the wavelength of the wave.

Wavelength $=$ \qquad m
(b) Calculate the phase difference between the point A on Fig. 1.1 and the origin S.

Phase difference $=$ \qquad
Unit: \qquad

2 (a) Fig. 2.1 shows three rays X, Y and Z incident on the interface between glass and air.

Fig. 2.1

The critical angle C for glass is shown on the diagram.
On Fig. 2.1, sketch the path of each ray after it leaves the interface. Label these paths X, Y and Z respectively.
(b) A short pulse of light enters a straight optical fibre of length 1.20 km . The pulse travels along the axis of the fibre, as shown in Fig. 2.2.

Fig. 2.2
(i) The pulse takes 5880 ns to pass along the fibre. Calculate the velocity of light in the material of the fibre.

Velocity of light $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$
(ii) Calculate the refractive index of the material.

Refractive index $=$
(iii) Calculate the critical angle of the material of the fibre.

Critical angle $=$ $-$
(c) A ray of light enters the plane surface of a block of ice at an angle of 27.0° to the surface, as shown in Fig. 2.3.

Fig. 2.3
(i) State the value of the angle of incidence of the light ray on the ice.

Angle of incidence $=$ \qquad ${ }^{\circ}$
(ii) The refractive index of ice is 1.31. Calculate the angle of refraction of the ray at the air-ice interface.

Angle of refraction $=$ \qquad ${ }^{\circ}$
(iii) Hence calculate the angle through which the refracted ray has been deviated from its original direction before refraction.

Angle of deviation = \qquad ${ }^{\circ}$
air

Angle of incidence
been deviated from its original direction betore refraction.

Angle of devian

BLANK PAGE

(Questions continue overleaf)

3 In part (a) of this question you should answer in continuous prose. You will be assessed on the quality of your written communication.
(a) (i) Distinguish between a real and a virtual image.
\qquad
\qquad
(ii) A small, upright object is placed on the principal axis of a diverging lens. The object is a long way from the lens, almost at infinity. Its image is upright, virtual and diminished, and is very close to the principal focus of the lens.
The object is then moved slowly from this distant position to a point close to the lens, within its focal length.
Describe how the nature and position of the image change as a result.
(You may make sketches in the space below to deduce what happens, but you will be credited only for your prose description.)

Description: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(b) The lens of a projector produces an image of a square slide of side 2.00 cm on a screen 2.40 m from the lens. The image on the screen is a square of side 0.80 m .
(i) Describe the nature of the image formed on the screen.
\qquad
\qquad
(ii) Calculate the distance between the projector lens and the slide.

Distance $=$ \qquad cm
(iii) Hence calculate the focal length of the projection lens.

Focal length $=$ \qquad cm

4 (a) When waves come together, stationary waves may be formed.
State the necessary conditions for this to occur.
(b) Fig. 4.1 shows a pipe of length 0.88 m , closed at one end, in air.

Fig. 4.1

Resonance is obtained when a vibrating tuning fork of frequency 288 Hz is held over the open end. The air in the pipe is then in its second mode of oscillation.
(i) On Fig. 4.1, illustrate the second mode of oscillation. Mark the positions of all nodes and antinodes. Use the letter N for each node, and the letter A for each antinode.
(ii) Calculate the speed of sound in air.

Speed of sound $=$ \qquad $\mathrm{m} \mathrm{s}^{-1}$

5 (a) Describe a transmission diffraction grating.
(b) A diffraction grating is illuminated normally by light of wavelength 589 nm . The first-order diffracted maximum occurs at an angle of 20.7° to the normal.
(i) Show that this grating has 600 lines per millimetre.
(ii) Find the highest order of diffraction that can be observed with this grating using light of wavelength 589 nm at normal incidence.

Highest order $=$

6 (a) A metal surface is illuminated by electromagnetic radiation of varying frequencies f. Photoelectrons of maximum kinetic energy $E_{\max }$ are emitted. Fig. 6.1 shows a graph of $E_{\max }$ against f.

Fig. 6.1

The gradient of the graph is m and the intercept on the $E_{\max }$ axis is $-c$. In terms of m and c, as appropriate, write down expressions for
(i) the Planck constant h,

$$
h=.
$$

(ii) the work function ϕ of the metal.

$$
\phi=
$$

\qquad
\qquad
(b) A zinc surface emits photoelectrons when exposed to very faint ultra-violet radiation. It does not emit photoelectrons when exposed to visible red light of high intensity.
(i) Explain this situation.
\qquad
\qquad
\qquad
(ii) State how the number of photoelectrons released per second from the zinc surface could be increased.
\qquad
\qquad
(c) A sodium surface emits photoelectrons of maximum kinetic energy $1.06 \times 10^{-19} \mathrm{~J}$ when illuminated by light of frequency $6.00 \times 10^{14} \mathrm{~Hz}$. Calculate the work function of the sodium surface in eV .

Work function $=$ \qquad eV

7 (a) Fig. 7.1 illustrates an experiment to demonstrate electron diffraction. A fine beam of electrons is incident on a thin metal foil inside an evacuated glass container.

Fig. 7.1

The pattern on the screen is one of concentric circles.
The accelerating potential difference applied to the electrons is increased. This causes the diameter of the circles to decrease. Explain why this happens.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The velocity of electrons in a beam is $1.20 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the wavelength of an electron in the beam.

Wavelength $=$ \qquad nm

THIS IS THE END OF THE QUESTION PAPER

GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants
speed of light in a vacuum
permeability of a vacuum
permittivity of a vacuum
elementary charge
the Planck constant
unified atomic mass unit
mass of electron
mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant
acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s} \\
& -2 \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Momentum-impulse relation

Power
Conservation of energy
$m v-m u=F t$
for a constant force
$P=F v$
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s$ for a constant force

Simple harmonic motion

Displacement
$x=x_{0} \cos \omega t$ or $x=x_{0} \sin \omega t$

Velocity
$v= \pm \omega \sqrt{x_{0}^{2}-x^{2}}$
Simple pendulum
$T=2 \pi \sqrt{l / g}$
Loaded helical spring $\quad T=2 \pi \sqrt{m / k}$

Medical physics

Sound intensity
level/dB
Sound intensit
difference/dB
Resolving power
$\sin \theta=\lambda / D$

Waves

Two-slit interference

$$
\begin{aligned}
& \lambda=a y / d \\
& d \sin \theta=n \lambda
\end{aligned}
$$

Diffraction grating

Light

Lens formula

$$
1 / u+1 / v=1 / f
$$

Stress and Strain

Hooke's law	$F=k x$
Strain energy	$E=<F>x$
	$\left(=\frac{1}{2} F x=\frac{1}{2} k x^{2}\right.$
	if Hooke's law is obeyed $)$

Electricity

Potential divider
$V_{\text {out }}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)$

Thermal physics

Average kinetic
energy of a molecule
Kinetic theory

$$
\frac{1}{2} m<c^{2}>=\frac{3}{2} k T
$$

$$
p V=\frac{1}{3} N m<c^{2}>
$$

Capacitors

Capacitors in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Capacitors in parallel

$$
C=C_{1}+C_{2}+C_{3}
$$

Time constant

$$
\tau=R C
$$

Electromagnetism

Magnetic flux density due to current in
(i) $\begin{aligned} & \text { long straight } \\ & \text { solenoid }\end{aligned} \quad B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Alternating currents

A.c. generator

$$
\begin{aligned}
& E=E_{0} \sin \omega t \\
& =B A N \omega \sin \omega t
\end{aligned}
$$

Particles and photons

Radioactive decay

$$
\begin{aligned}
& A=\lambda N \\
& A=A_{0} \mathrm{e}^{-\lambda t}
\end{aligned}
$$

Half life

$$
t_{\frac{1}{2}}=0.693 / \lambda
$$

Photoelectric effect

$$
\begin{aligned}
& \frac{1}{2} m v_{\max }^{2}=h f-h f_{0} \\
& \lambda=h / p
\end{aligned}
$$

de Broglie equation

Particle Physics

Nuclear radius

$$
r=r_{0} A^{\frac{1}{3}}
$$

