

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2009

Physics

Assessment Unit AS 1 assessing Module 1: Forces and Electricity

[ASY11]

TUESDAY 27 JANUARY, MORNING

71

	~
	~
	<u>'</u> >-
	- ín
	2
	~
_	

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Answer **all seven** questions.

Write your answers in the spaces provided in this question paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.

Quality of written communication will be assessed in question 4(c).

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Your attention is drawn to the Data and Formula Sheet which is inside this question paper.

You may use an electronic calculator.

You will need a ruler and protractor.

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
6			
7			
Tetal			

Total Marks

If y paj	you n per, t	eed hey	the values of may be foun	physical con d on the Data	istants to answer a a and Formulae Sh	ny questions in th eet.	nis	Examine Marks	er Only Remark
				Answer all	seven questions				
1	(a)	The thos app	e list below gi se which are l ropriate box.	ves a number 5ase quantitie	of physical quantities or base units, place	tes and units. For ce a tick () in the	e		
		Cot	ılomb						
		For	ce						
		Len	igth						
		Mo	le						
		Nev	wton						
		Ten	nperature				[2]		
	(b)	Wh	at are the bas	e units of kine	etic energy?				
							[1]		
	(c)	(i)	Explain the o	lifference bet	ween a scalar and a	a vector quantity.			
							[2]		
		(ii)	A student sta it involves ve another stude student is co	ntes that kinet elocity, and ve ent says that k rrect. Explain	ic energy is a vector elocity is certainly a kinetic energy is a so why.	r quantity, because vector. However, calar. The second	2		
							[1]		

(d) Fig. 1.1 shows two vectors **P** and **Q**.

In the spaces below, **sketch** the constructions necessary to obtain the vectors **A** and **B**, where $\mathbf{A} = \mathbf{P} + \mathbf{Q}$ and $\mathbf{B} = \mathbf{P} - \mathbf{Q}$. (Drawings to scale are **not** required.)

$\mathbf{A} = \mathbf{P} + \mathbf{Q}$

$\mathbf{B} = \mathbf{P} - \mathbf{Q}$

[Turn over

Examiner Only Marks Remark

Examiner Only

Rei

Marks

Fig. 2.1 (not to scale)

The player stands at a white line on the floor, 2.37 m from the board. The bull's eye on the board is 1.75 m above the floor. **Fig. 2.2** shows the bottom segment of the board. Depending on the region of this segment into which the dart sticks, it scores 3 points or multiples of 3 points.

Fig. 2.2 (not to scale)

(a)	Star thro san	nding at the white line directly in front of the board, the player ows a dart horizontally, from a point 1.75 m above the floor (at the ne level as the bull's eye), with a speed of 14.0 m s^{-1} .	Examiner Only Marks Remark
	(i)	Calculate the time taken for the dart to travel between the player's hand and the dart board. Ignore air resistance.	
		Time =s [2]	
	(ii)	The dart sticks into the board at the point marked A on Fig. 2.2 . Calculate the vertical distance <i>y</i> of the point A below the centre of the bull's eye.	
		Vertical distance $y = \m$ [3]	
	(iii)	The player now needs a double-3 (see Fig. 2.2) to win the game. Without further calculation, indicate by placing a tick (\checkmark) in the appropriate box how the projection speed should be adjusted to achieve this result. The dart is to be thrown horizontally towards the bull's eye, as before. Explain your answer.	
		The speed of the dart should be decreased	
		Explanation:	
		[3]	
		5	[Turn over

(b)	The player changes the type of dart used to mass, and throws it in the same direction, the dart which hit point A. Describe how to strikes the board will change, if at all, as a of mass of the dart. Explain your answer.	d to one which has a greater n, and with the same speed, as w the position at which the dart s a consequence of the change er.			
	The dart strikes the board above point A				
	The dart strikes the board at point A				
	The dart strikes the board below point A				
	Explanation:				
		[2]			
	6				

BLANK PAGE

(Questions continue overleaf)

A man pushes a wheelbarrow on level ground at a constant speed of 3 $1.5 \,\mathrm{m\,s^{-1}}$, as shown in **Fig. 3.1**. The wheelbarrow contains soil. The combined mass of wheelbarrow and soil is 22 kg.

Examiner Only Marks

_[2]

Re

(a) The total frictional force acting is 12 N. State the force exerted by the man on the wheelbarrow. Explain your answer.

Force = _____N

Explanation:

(b) The man now approaches a slope inclined at 5.0° to the horizontal, as shown in Fig. 3.2.

4873

[Turn over

Where appropriate in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

4 A soft squashy ball is dropped from rest from a height onto a hard surface. The graph in **Fig. 4.1** shows how the height of the top of the ball above the surface varies with time.

Fig. 4.1

Points in the motion of the ball have been labelled A, B, C, D, E and F. The ball first makes contact with the surface at the time corresponding to C. It leaves the surface again at the time corresponding to E.

(a) On **Fig. 4.2**, sketch the shape of the ball at the times corresponding to C, D and E.

Examiner Only Re

(b)	State the type or types of energy possessed by the ball at the times corresponding to the following points.	Examiner Only Marks Remark
	(i) Point A:	
	(ii) Point B:	
	(iii) Point C: [3]	
(c)	After rebounding from the surface, the ball rises to a height represented by point F. The fact that F is at a lower height than point A might suggest that the principle of conservation of energy has been broken. Explain why the principle has not, in fact, been broken.	
	Quality of written communication [1]	
	11	[Turn over

(c)	A c	opper wire is 2.8 m long and has diameter 1.2 mm.		Examine Marks	r Only Remark
	(i)	This length of wire contains 2.7×10^{23} charge carriers. Show th the number density of charge carriers in the wire is 8.5×10^{28} m	at 1^{-3} .		
			[2]		
	(ii)	The wire carries a current of 3.5A. Calculate the drift speed of charge carriers in the wire.			
		Drift speed = $\m s^{-1}$	[2]		
(d)	The dete den thou not this	e number density of charge carriers is an important quantity in ermining the electrical properties of a metal. Because the number sity appears in the relatively simple Equation 5.1 , it might be ught that it would be easy to measure experimentally. However, i practicable to use Equation 5.1 to obtain <i>n</i> directly. Suggest wh is the case.	t is y		
			[1]		
			I		

[Turn over

			[1]	
(b)	(i)	An aluminium wire is 1.5 m long and has a radius of 0.56 mm. When the current in the wire is 0.32 A, the potential difference between the ends of the wire is 0.013 V. Calculate the resistivity aluminium.	v of	
		Resistivity = $_ \Omega m$	[4]	

the corresponding quantities for wire A. In each case, explain reasoning.	es of your	
Resistance of wire B compared with resistance of wire A:		
Reasoning:		
Resistivity of wire B compared with resistivity of wire A:		
Reasoning:		
	_ [4]	

(ii) This aluminium wire (wire A) is now replaced with a different

Examiner Only

7 The circuit of Fig. 7.1 contains five 10Ω resistors connected to a 6 V battery as shown.

(a) (i) Calculate the total resistance of the network between the points X and Y.

Resistance = Ω

(ii) Hence determine the current I_1 .

Current = _____A

[2]

[2]

Examiner Only

Re

Marks

(b)	b) Explain why the potential difference between points B and C is zero.		er Only
. ,		Marks	Remark
	[1]		

THIS IS THE END OF THE QUESTION PAPER

Data and Formulae Sheet

Values of constants

speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
permeability of a vacuum	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H}\mathrm{m}^{-1}$
permittivity of a vacuum	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$ $\left(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{F^{-1}} \mathrm{m}\right)$
elementary charge	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass unit	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$
mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J} \mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
acceleration of free fall on the Earth's surface	$g = 9.81 \text{ m s}^{-2}$
electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Momentum-impulse relation	mv - mu = Ft for a constant force
Power	P = Fv
Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force

Simple harmonic motion

Displacement	$x = x_0 \cos \omega t \text{ or}$ $x = x_0 \sin \omega t$	
Velocity	$v = \pm \omega \sqrt{x_0^2 - x^2}$	ŀ
Simple pendulum	$T=2\pi\sqrt{l/g}$	
Loaded helical spring	$T=2\pi\sqrt{m/k}$	
Medical physics		
Sound intensity level/dB	$= 10 \lg_{10}(I/I_0)$	
Sound intensity difference/dB	$= 10 \lg_{10}(I_2/I_1)$	A
Resolving power	$\sin \theta = \lambda/D$	
Waves		F
Two-slit interference	$\lambda = ay/d$	
Diffraction grating	$d\sin\theta = n\lambda$	
Light		
Lens formula	1/u + 1/v = 1/f	
Stress and Strain		
Hooke's law	F = kx	I
Strain energy	$E = \langle F \rangle x$ (= $\frac{1}{2}Fx = \frac{1}{2}kx^2$ if Hooke's law is obeyed)	
Electricity		
Potential divider	$V_{\rm out} = R_1 V_{\rm in} / (R_1 + R_2)$	

| Thermal physics

Averag energy	e kinetic of a molecule	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$
Kinetic	theory	$pV = \frac{1}{3}Nm \langle c^2 \rangle$
Capacito	ors	
Capacit	tors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$
Capacit	ors in parallel	$C = C_1 + C_2 + C_3$
Time c	onstant	$\tau = RC$
Electron	nagnetism	
Magnet due to	tic flux density current in	
(i) lon sol	g straight enoid	$B = \frac{\mu_0 NI}{l}$
(ii) lon cor	g straight nductor	$B = \frac{\mu_0 I}{2\pi a}$
Alternat	ing currents	
A.c. ge	nerator	$E = E_0 \sin \omega t$ = BAN\omega \sin \omega t
Particles	and photons	
Radioa	ctive decay	$A = \lambda N$ $A = A_0 e^{-\lambda t}$
Half lif	e	$t_{\frac{1}{2}} = 0.693/\lambda$
Photoe	lectric effect	$\frac{1}{2}mv_{\max}^2 = hf - hf_0$
de Brog	glie equation	$\lambda = h/p$
Particle	Physics	
Nuclea	r radius	$r = r_0 A^{\frac{1}{3}}$