### GCE Physics (Advanced Subsidiary and Advanced)

#### **Data and Formulae Sheet**

#### Values of constants

| speed of light in a vacuum | $c = 3.00 \times 10^8 \mathrm{m  s^{-1}}$                                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| permeability of a vacuum   | $\mu_0 = 4\pi \times 10^{-7} \mathrm{H \ m^{-1}}$                                                                                         |
| permittivity of a vacuum   | $\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$ $\left(\frac{1}{4\pi \varepsilon_0} = 8.99 \times 10^9 \mathrm{F^{-1} m}\right)$ |
|                            |                                                                                                                                           |

 $e = 1.60 \times 10^{-19}$ C elementary charge  $h = 6.63 \times 10^{-34} \,\mathrm{J s}$ the Planck constant  $1 u = 1.66 \times 10^{-27} \text{kg}$ unified atomic mass unit  $m_{\rm e} = 9.11 \times 10^{-31} \,\rm kg$ mass of electron  $m_{\rm p} = 1.67 \times 10^{-27} \,\rm kg$ mass of proton  $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ molar gas constant

 $N_{\rm A} = 6.02 \times 10^{23} \,\rm mol^{-1}$ the Avogadro constant  $k = 1.38 \times 10^{-23} \,\mathrm{J \, K^{-1}}$ the Boltzmann constant

 $G = 6.67 \times 10^{-11} \,\mathrm{N \, m^2 \, kg^{-2}}$ gravitational constant

acceleration of free fall on  $g = 9.81 \text{ m s}^{-2}$ the Earth's surface

 $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$ electron volt



A2Y11INS

#### **USEFUL FORMULAE**

The following equations may be useful in answering some of the questions in the examination:

#### **Mechanics**

| Momentum-impulse | mv - mu = Ft         |
|------------------|----------------------|
| relation         | for a constant force |

Power 
$$P = Fv$$

Conservation of 
$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$$
 energy for a constant force

### **Simple harmonic motion**

Displacement 
$$x = x_0 \cos \omega t$$
 or  $x = x_0 \sin \omega t$ 

Velocity 
$$v = \pm \omega \sqrt{x_0^2 - x^2}$$

Simple pendulum 
$$T = 2\pi \sqrt{l/g}$$

Loaded helical spring 
$$T = 2\pi \sqrt{m/k}$$

### **Medical physics**

Sound intensity = 
$$10 \lg_{10}(I/I_0)$$
 level/dB

Sound intensity = 
$$10 \lg_{10}(I_2/I_1)$$
 difference/dB

Resolving power 
$$\sin \theta = \lambda/D$$

#### Waves

Two-slit interference 
$$\lambda = ay/d$$

Diffraction grating 
$$d \sin \theta = n\lambda$$

# Light

Lens formula 
$$1/u + 1/v = 1/f$$

#### Stress and Strain

Hooke's law 
$$F = kx$$

Strain energy 
$$E = \langle F \rangle x$$

$$(= \frac{1}{2}Fx = \frac{1}{2}kx^2$$
if Hooke's law is obeyed)

# **Electricity**

Potential divider 
$$V_{\text{out}} = R_1 V_{\text{in}} / (R_1 + R_2)$$

### Thermal physics

| Average kinetic      | $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ |
|----------------------|----------------------------------------|
| energy of a molecule | _                                      |

Kinetic theory 
$$pV = \frac{1}{3}Nm < c^2 >$$

### **Capacitors**

Capacitors in series 
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Capacitors in parallel 
$$C = C_1 + C_2 + C_3$$

Time constant 
$$\tau = RC$$

### Electromagnetism

Magnetic flux density due to current in

(i) long straight solenoid 
$$B = \frac{\mu_0 NI}{l}$$

(ii) long straight conductor 
$$B = \frac{\mu_0 I}{2\pi a}$$

### **Alternating currents**

A.c. generator 
$$E = E_0 \sin \omega t$$
$$= BAN\omega \sin \omega t$$

# **Particles and photons**

Radioactive decay 
$$A = \lambda N$$
  
 $A = A_0 e^{-\lambda t}$ 

Half life 
$$t_{\frac{1}{2}} = 0.693/\lambda$$

Photoelectric effect 
$$\frac{1}{2} m v_{\text{max}}^2 = h f - h f_0$$

de Broglie equation 
$$\lambda = h/p$$

## **Particle Physics**

Nuclear radius 
$$r = r_0 A^{\frac{1}{3}}$$

4707.02