GCE Physics (Advanced Subsidiary and Advanced)

Data and Formulae Sheet

Values of constants

speed of light in a vacuum
permeability of a vacuum
permittivity of a vacuum
elementary charge the Planck constant
unified atomic mass unit mass of electron
mass of proton
molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall on the Earth's surface
electron volt

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
& \left(\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}\right) \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& g=9.81 \mathrm{~m} \mathrm{~s} \\
& -2 \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

A2Y11INS

USEFUL FORMULAE

The following equations may be useful in answering some of the questions in the examination:
Mechanics

Momentum-impulse relation

Power
Conservation of energy
$m v-m u=F t$
for a constant force
$P=F v$
$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=F s$
for a constant force
Simple harmonic motion
Displacement
$x=x_{0} \cos \omega t$ or $x=x_{0} \sin \omega t$

Velocity
Simple pendulum
Loaded helical spring
Medical physics
Sound intensity
level/dB
Sound intensity
difference/dB
Resolving power
$\sin \theta=\lambda / D$

Waves

Two-slit interference $\quad \lambda=a y / d$
Diffraction grating $\quad d \sin \theta=n \lambda$

Light

Lens formula

$$
1 / u+1 / v=1 / f
$$

Stress and Strain
Hooke's law
$F=k x$
Strain energy
$E=\langle F\rangle x$ $\left(=\frac{1}{2} F x=\frac{1}{2} k x^{2}\right.$ if Hooke's law is obeyed)

Electricity

Potential divider

$$
V_{\mathrm{out}}=R_{1} V_{\mathrm{in}} /\left(R_{1}+R_{2}\right)
$$

Thermal physics

Average kinetic energy of a molecule
Kinetic theory

$$
\begin{aligned}
& \frac{1}{2} m<c^{2}>=\frac{3}{2} k T \\
& p V=\frac{1}{3} N m<c^{2}>
\end{aligned}
$$

Capacitors

Capacitors in series
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Capacitors in parallel $C=C_{1}+C_{2}+C_{3}$

Time constant
$\tau=R C$

Electromagnetism

Magnetic flux density due to current in
(i) long straight solenoid
$B=\frac{\mu_{0} N I}{l}$
(ii) long straight conductor

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

Alternating currents

A.c. generator

Particles and photons

Radioactive decay

Half life

$$
\begin{aligned}
& E=E_{0} \sin \omega t \\
& =B A N \omega \sin \omega t
\end{aligned}
$$

Photoelectric effect $\quad \frac{1}{2} m v_{\max }^{2}=h f-h f_{0}$ de Broglie equation $\quad \lambda=h / p$

Particle Physics

Nuclear radius

