GCE
 AS and A Level

Physics B: Physics In Context

AS exams 2009 onwards
A2 exams 2010 onwards

Unit 5:
Approved specimen mark scheme
Version 1.1

General Certificate of Education
Physics 2456
Specification B Physics In Context

PHYB5 Energy Under the Microscope

Mark Scheme

Specimen Draft

The specimen assessment materials are provided to give centres a reasonable idea of the general shape and character of theplanned question papers and mark schemes in advance of the first operational exams.

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.
It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

PHYB5: Energy Under the Microscope

Question 1			
(a) (i) (ii) (iii)	$\begin{aligned} & P V=N k T \checkmark \\ & 223 \times 10^{5} \mathrm{~Pa} \checkmark \\ & p V=\text { const or repeat calculation from (i) } \checkmark \\ & 3.5 \times 10^{-3} \mathrm{~m}^{3} \checkmark \\ & \text { kinetic energy }=3 / 2 \mathrm{kT} \checkmark \\ & 5.9(0) \times 10^{-21} \mathrm{~J} \checkmark \end{aligned}$	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$	6
(b) (i) (ii)	$\left.\begin{array}{l}\text { volume increase } \checkmark \\ \text { time between collisions increases } \checkmark \\ \text { speed constant as temp constant } \checkmark \\ \text { rate of change of momentum decreases } \checkmark \\ \text { volume smaller in cylinder } \checkmark \\ \left.\begin{array}{l}\text { molecules occupy significantly greater proportion of the } \\ \text { volume } \checkmark \\ \text { molecules closer so intermolecular forces greater } \checkmark\end{array}\right\} \max \mathbf{3} \text { }\end{array}\right\}$	AO1 AO1 AO2 AO2 AO1 AO2 AO2	6
(c)	internal energy stays the same gas does work in expanding so W is negative gas must be heated to make U positive \checkmark U and W equal and opposite \checkmark	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \end{aligned}$	4
		Total	16

Question 2			
(a)	number correct for alpha \checkmark number correct for beta \checkmark alpha decay first goes via $\mathrm{Tl} \checkmark$ numbers correct for $\mathrm{Tl}(208,81) \checkmark$ beta decay first goes via Po \checkmark numbers correct for $\operatorname{Po}(212,84) \checkmark$	AO1 AO1 AO2 AO2 AO2 AO2	6
(b) (i) (ii)	$\left.\begin{array}{l}\text { use of GM tube }+ \text { counter/rate-meter } \checkmark \\ \text { measurement of count rate } \checkmark \\ \left.\begin{array}{l}\text { at range of distances }+ \text { suitable ruler or tape } \\ \text { measure } \checkmark \\ \text { specifies suitable range } \checkmark \\ \text { determines background \& corrects } \checkmark \\ \text { safety precaution given } \checkmark \\ \text { graph of count rate or corrected count rate } \\ \text { against } 1 / d^{2} \checkmark \\ \text { gamma not absorbed } \checkmark \\ \text { spreads uniformly from a point } \\ \text { source/spherically symmetrically } \checkmark \\ \text { area over which it spreads is proportional to } \\ \text { radius squared } \checkmark\end{array}\right\} \text { max } 6\end{array}\right\}$ max 2 alpha and beta are absorbed in addition to spreading out \checkmark	AO3 AO1 AO1 AO1 AO2	9
		Total	15

Question 3			
(a)	```clear attempt to find mass defect \(\checkmark\) 0.1860 u (condone 3 s.f.) \(\checkmark\) converts their answer to \(\mathrm{kg}(3.09 \times 10-28)\) uses \(\Delta E=\Delta m c^{2} \checkmark\) \(2.78 \times 10^{-11} \mathrm{~J} \checkmark\)```		5
(b) (i) (ii) (iii)	```slow neutrons down \(\checkmark\) slow neutrons more likely to produce fission \(\checkmark\) water \(\checkmark\) small atomic mass \(\checkmark\) not a strong neutron absorber \(\checkmark\)```	$\begin{aligned} & \mathrm{AO1} \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \end{aligned}$	5
(c) (i) (ii) (iii)	start up and close down - control rods power control in operation - material injected into coolant \checkmark boron rods or boric acid \checkmark strong neutron absorber	$\begin{aligned} & \mathrm{AO1} \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$	4

(d)	The marking scheme for this part of the question includes an overall assessment for the Quality of Written Communication (QWC). There are no discrete marks for the assessment of QWC but the candidates' QWC in this answer will be one of the criteria used to assign a level and award the marks for this part of the question.		
Level	Descriptor an answer will be expected to meet most of the criteria in the level descriptor		Mark range
Good 3	- claims supported by an appropriate range of evidence good use of information or ideas about physics, going beyond those given in the question - argument well structured with minimal repetition or irrelevant points - accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling		5-6
Modest 2	- claims partially supported by evidence good use of information or ideas about physics given in the question but limited beyond this - the argument shows some attempt at structure the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling		3-4
Limited 1	- valid points but not clearly linked to an argument structure - limited use of information or ideas about physics - unstructured - errors in spelling, punctuation and grammar or lack of fluency		1-2
0	- incorrect, inappropriate or no response		0
	examples of the sort of information or ideas that might be used to support an argument: does not contribute to greenhouse gases doesn't use up oil reserves danger of nuclear accident legacy of radioactive waste risk of spread of nuclear technology or materials	AO3 AO3 AO3 AO3 AO3	
(e)	fission has long lasting very harmful fission products \checkmark fusion fuel safely and readily available without dangerous reprocessing \checkmark	$\begin{aligned} & \mathrm{AO1} \\ & \mathrm{AO} 2 \end{aligned}$	2
		Total	22

Question 4			
(a) (i) (ii)	charge stored per unit volt or equation with terms defined 0.108 C or 0.11 C c.a.o.	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \end{aligned}$	2
(b) (i) (ii)	1.7 s correct curvature \checkmark intercept on V axis, asymptotic to t axis \checkmark initial voltage, time constant and V after $R C$ seconds shown \checkmark	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \end{aligned}$	4
(c)	initially no pd across C so rate of charging is high \checkmark Pd across C increases as the capacitor charges rate of charging reduces \checkmark	AO1 AO1 AO1	3
		Total	9

Question 5			
(a) (i) (ii) (iii)	ions experience a force due to both the magnetic and electric fields \checkmark fields are in opposite directions equal and opposite for ions of only 1 speed $v=E / B \text { and } E=V / d \checkmark$ data substituted and evaluated correctly $B q v=m v^{2} / r v$ correct substitution with or without the doubling to find $d \checkmark$ $0.29 \mathrm{~m} \checkmark$	AO1 AO1 AO2 AO1 AO2 AO1 AO2 AO2	8
(b) (i) (ii)	a.c. supply connected to electrodes electrons accelerated in the electric fields between consecutive electrodes electrons are going faster each time so need more distance between \checkmark electrodes to be phase with the alternating supply \checkmark $m=\frac{m_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ correct substitution of data \checkmark $2.5(4) \times 10^{30} \mathrm{~kg} \checkmark$	AO1 AO1 AO2 AO2 AO1 AO2 AO2	7
		Total	15

Question 6			
(a) (i) (ii) (iii)	use of $\lambda=(\ln 2) / t^{1 / 2}$ shows that years have been converted to seconds \checkmark use of 1 mole 238 g $4.0(4) \times 10^{20} \checkmark$ states $A=\lambda N \checkmark$ multiples (i) by (ii) \checkmark	AO1 AO2 AO2 AO2 AO1 AO2	6
(b) (i) (ii)	$\begin{aligned} & \text { multiples } 1.0 \times 10^{11} \text { by } 5600 \times 10^{3} \checkmark \\ & 0.090 \mathrm{~J} \checkmark \\ & 7.5 \times 10^{-4} / 0.090 \checkmark \\ & 0.83 \% \checkmark \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \end{aligned}$	4
(c)	use of any $\mathrm{e}^{-\lambda t}$ relationship \checkmark uses 6/7.5 \checkmark $5.0 \times 10^{9} \mathrm{~s} \checkmark$	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \end{aligned}$	3
(d)	uses $E=m c \Delta \theta \checkmark$ $9.1 \checkmark$ K or ${ }^{\circ} \mathrm{C} \checkmark$	AO1 AO2 AO1	3
(e) (i) (ii)	chooses beta emitter so there is no risk of neutron production rejects strontium as to energetic \checkmark selects Nickel which has an appropriate half life \checkmark may be alpha or gamma emitters in the decay chain \checkmark	AO3 AO3 AO3 AO3	4
(f)	compares risk of death with and without pacemaker mentions quality of life \checkmark clinical trials/prior testing to establish reliability \checkmark	AO3 AO3 AO3	3
		Total	23

