Teacher Resource Bank

GCE Physics

Sample AS EMPA:

- Mark Schemes

Sample AS EMPA Mark Scheme
Section A Task 1

Question 1		
(a)	table 1: \quad three readings, all to 0.01 V , row $1>$ row $2>$ row $3 \checkmark$	1
(b)	table 2: $\begin{aligned} & \text { pd across } R_{1}=(\text { table } 1 \text { row } 1-\text { table } 2 \text { row } 2) \\ & \text { pd across } R_{2}=(\text { table } 1 \text { row } 1-\text { table } 1 \text { row } 3) \\ & \text { pd across } R_{3}=(\text { table } 1 \text { row } 3) \\ & \text { pd across } R_{2} \approx \text { pd across } R_{3} \end{aligned}$ all 4 criteria met $\checkmark \checkmark$ any 3 criteria met \checkmark	2
(c)	$\begin{array}{\|ll} \hline \text { explanation: } & \begin{array}{l} \text { resistances } R_{1}, R_{2} \text { and } R_{3} \text { are in series } \checkmark \\ \\ \\ \text { current in resistors is the same } \checkmark \\ \text { deduction: } \\ \\ \\ \\ \\ R_{1} \text { is the smallest resistance } \checkmark \\ \\ R_{2}=R_{3} \checkmark \end{array} \end{array}$	$\max 2$ 2
(d)	table 3: \quad two readings to 0.01 V , row $1>$ row $2 \checkmark$	1
(e)	table 4: \quad pd across $R_{1}=($ table 1 row $1-$ table 3 row 1) pd across R_{2} and $R_{4}=($ table 3 row 1 - table 3 row 2) pd across $R_{3}=$ (table 3 row 2) pd across $R_{1} \approx \mathrm{pd}$ across R_{2} and R_{4} all 4 criteria met $\checkmark \checkmark$ any 3 criteria met \checkmark	2
(f)	explanation: (from observation) pd across $R_{1} \approx \mathrm{pd}$ across R_{2} and R_{4} hence $R_{1}=$ effective resistance, R_{t}, of R_{2} and R_{4} R_{2} and R_{4} are in parallel; $\frac{1}{R_{t}}=\frac{1}{R_{2}}+\frac{1}{R_{4}} \checkmark$ hence suggestion is correct \checkmark [R_{2} and R_{4} are in parallel; $\frac{1}{R_{t}}=\frac{1}{R_{2}}+\frac{1}{R_{4}} \checkmark$ if suggestion is correct, $R_{1} \approx R_{\mathrm{t}} \checkmark$ and pd across $R_{1} \approx$ pd across R_{2} and $R_{4} \checkmark$ hence suggestion is correct \checkmark]	4
	Total	14

Section A Task 2

\begin{tabular}{|c|c|c|}
\hline Question 1 \& \&

\hline (a) \& (b) \& \& 2

3

2
1

\hline (c) \& | axes: | marked $I / m A$ (vertical) and V/V (horizontal) $\checkmark \checkmark$

 deduct $1 / 2$ for each missing, rounding down; 1 max if axes
 reversed |
| :--- | :--- |
| scales: | points should cover at least half the grid horizontally \checkmark
 and half the grid vertically \checkmark
 (if necessary, a false origin should be used to meet these
 criteria; either or both marks may be lost for use of a difficult
 or non-linear scale or if the interval between the numerical
 values are marked on an axis with a frequency of $>5 \mathrm{~cm}$) |
| points: | 5 points plotted correctly in positive quadrant (check at least
 two) and 5 points plotted correctly in negative quadrant
 (check at least three) $\checkmark \checkmark \checkmark$ |
| | marks are deducted for points >1 mm from correct position
 and if poorly marked |
| line: | with 2 straight line (ruled) sections of positive gradients;
 smooth transition as gradients change \checkmark | \& 2

2

3
1

\hline \& Total \& 16

\hline
\end{tabular}

Section B

Question 1		
(a) or (b)	apply to larger of gradient triangles y-step at least 8 cm and x-step at least $8 \mathrm{~cm} \checkmark$ (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8×8 criteria) correct transfer of y-step and x-step data between graph and calculation (mark is withheld if points used to determine either step > 1 mm from correct position on grid; if tabulated points are used these must lie on the line)	2
(c)	$\frac{G_{1}}{G_{2}}$,no unit, in range 1.56 to 1.72 or $1.6 \checkmark \checkmark$ [1.48 to 1.81 or $1.7 \checkmark$] no credit here if axes are reversed on graph	2
	Total	4

Question 2				
	(idea that) Ohm's law obeyed where $I \propto V \checkmark$			
correct statement for negative V, e.g. always Ohmic \checkmark				
correct statement for positive V, e.g. Ohmic up to $V=1.2 \mathrm{~V} \pm 0.1 \mathrm{~V} \checkmark$				
(last two points may be earned for an appropriately annotated sketch)			$\quad 3$	Total
:---:				

Question 3		
(a) (ii)	correct calculation of $\left(R_{1}+R_{3}\right)$ from $G_{1}{ }^{-1}$, no order of magnitude errors; correct calculation of $\left(R_{1}+R_{2}+R_{3}\right)$ from $G_{2}{ }^{-1}$, no order of magnitude errors \checkmark	1
(b) (i) (ii)	$R_{2}=$ difference (a)(ii) - (a)(i); allow order of magnitude error here R_{2} in range 1620Ω to $1980 \Omega \checkmark$ $R_{1}=$ difference (a)(ii) $-2 \times(\mathrm{a})$ (i); allow order of magnitude error here \checkmark R_{1} in range 800Ω to $1200 \Omega \checkmark$	4
	Total	5

Question 4		
(a)	percentage uncertainty in pd across $R_{1}=3.13 \% \checkmark$ [allow 3.125% or 3.1%] percentage uncertainty in pd across $R_{2}=1.72 \% \checkmark$ [allow 1.717% or 1.7%]	2
(b) (i) (ii)	percentage uncertainty in (pd across) R_{1} result added to uncertainty in (pd across) R_{2} result 4.84\% \checkmark [allow 4.842\% or 4.8\%] absolute uncertainty in $\frac{R_{2}}{R_{1}}=1.82 \times$ answer to (b) (i) \checkmark absolute uncertainty in $\frac{R_{2}}{R_{1}}=0.088$, no unit \checkmark [allow 0.09]	4
	Total	6

Question 5		
(a) (i) (ii)	when contact is at T, pd across $X=E \checkmark$ when contact is at L, pd across $X=0 \checkmark$ when contact is at T, pd across $X=E \checkmark$ when contact is at L, pd across $X>0 \checkmark$	4
(b) (i) (ii)	range of I and V data is greater interval between each set of $/$ and V data is smaller greater precision can be achieved	3
	Total	7
	Section B Total	25

