Teacher Resource Bank

GCE Physics

Sample A2 EMPA:

- Mark Scheme

Sample A2 EMPA Mark Scheme

Section A Task 1

Question 1		
(a)	accuracy: $\quad I_{1}$ and I_{2} to $1 \mathrm{~mA}, I_{2}$ about $1.75 \times I_{1} \checkmark$	1
(b)	accuracy: $\quad I_{3}$ and I_{4} to $1 \mathrm{~mA}, I_{4} \approx I_{3} \pm 1 \mathrm{~mA} \checkmark$ $I_{3}=I_{1} \downarrow$	2
(c)	explanation: $\quad R_{2}>R_{1}$ or $0 / 2 \checkmark$ when R_{1} and R_{2} are in parallel with R_{2}, I increases significantly $\left[I_{2}\right.$ much greater than $\left.I_{1}\right]$ [when R_{1} and R_{2} are in parallel with R_{1}, I increases by only a small amount (I_{4} not much greater than $\left.I_{3}\right) \vee$]	2
(d)	explanation: method 1 'background' $=3.65 \mathrm{~V} \checkmark$ computes 'corrected' values of V, all correct \checkmark evaluates (at least) 2 ratios of 'corrected' $V \checkmark$ to show that the students suggestion is false \checkmark variation on method 1 'background' $=3.65 \mathrm{~V} \checkmark$ computes 'corrected' values of V, all correct \checkmark sketches 'corrected' V against n and makes (at least) 2 'half life' measurements \checkmark to show that the student's suggestion is false \checkmark method 2 evaluates $\ln (V / V)$, using 'uncorrected' or 'corrected' $V \checkmark$ all In (V/V) correct evaluates (at least) 2 differences between adjacent values of $\ln (V / V) \checkmark$ to show that the student's suggestion is false \checkmark variation on method 2 evaluates $\ln (V / V)$, using 'uncorrected' or 'corrected' $V \checkmark$ all $\ln (V / V)$ correct \checkmark sketches $\ln (V / V)$ against n and produces best-fit line of negative, decreasing gradient \checkmark to show that the student's suggestion is false \checkmark [allow 'suggestion is correct' if straight best-fit line drawn]	4
	Total	9

Data for use in Question 1 (d) Section A Task 1

see method 1

see method 2

n	$V_{\text {out }} / \mathrm{V}$	$\ln (V)$	difference	1.600						
				$\ln (V / \mathrm{V})$	+					
1	4.55	1.515				+				
2	4.20	1.435	0.0800	1.400			+			
3	3.97	1.379	0.0563					$+$	+	$+$
4	3.83	1.343	0.0359							
5	3.75	1.322	0.0211	1.200	+	'	1	,	!	
6	3.70	1.308	0.0134		1	2	3	4	5	

Question 2		
(a) (i) (ii)	accuracy: sensible time base setting recorded, with units \checkmark accuracy: evidence of working; cycle (or $n \times$ cycle) converted to s by multiplying by time base setting \checkmark period, T, recorded to $0.1 \mathrm{~ms} \checkmark$ f from $\frac{1}{T}$, in range 800 Hz to $900 \mathrm{~Hz} \checkmark$	1 $\max 2$
(b)	method: evidence of working; 3 measurements in mm or divisions, converted to V by multiplying by Y-gain sensitivity $V_{1}>V_{2}>V_{3}, V_{1} \approx 1.6 \mathrm{~V} \checkmark$	2
(c)	explanation: $\frac{V_{3}\left(V_{1}+V_{2}\right)}{V_{1} V_{2}}$, no unit, 0.97 to $1.07 \checkmark \checkmark$ [0.92 to $1.13 \checkmark$]	2
	Total	7
	Section A Task 1 Total	16

Section A Task 2

Question 1			
(a)	accuracy:	T_{0} in range $40(.0)$ to 60(.0)(s) \checkmark	1
(b)	tabulation: results: significant figures: quality:	$\begin{array}{lcc}T & / \mathrm{s} & R \\ \text { deduct } 1 / 2 \text { for each missing label or separator, rounding down }\end{array}$ 6 sets of T and R deduct (up to 2 marks) for each missing deduct 1 mark if no T (including T_{0}) is calculated from $n T$ where n or $\Sigma n \geq 2$ all T (including T_{0}) to $0.1(0) \mathrm{s} \checkmark$ at least 5 points to +2 mm of straight line of positive gradient (judge from graph, providing this is suitably-scaled) \checkmark	5

(c)	tabulation: significant figures: axes: scales: points: line:	$\frac{1}{T} \quad \frac{1}{R}$ all of each set to either 3 sf or 4 sf marked $\frac{1}{T} / \mathrm{s}^{-1}, \frac{1}{R} / \mathrm{k} \Omega^{-1},\left[\Omega^{-1}\right] \checkmark \checkmark$ deduct $1 / 2$ for each missing label or separator, rounding down; no credit if axes reversed points should cover at least half the grid horizontally and half the grid vertically (if necessary, a false origin should be used to meet these criteria; either or both marks may be lost for use of a difficult or non-linear scale or if the interval between the numerical values are marked on an axis with a frequency of $>5 \mathrm{~cm}$) 6 points plotted correctly (check at least two) marks are deducted for points $>1 \mathrm{~mm}$ from correct position and if poorly marked (ruled) best fit line of positive gradient \checkmark	10
		Total	16

Section B

Question 1				
(a)	y-step at least 8 cm and x-step at least $8 \mathrm{~cm} \checkmark$ (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8×8 criteria) correct transfer of y-step and x-step data between graph and calculation \checkmark (mark is withheld if points used to determine either step >1 mm from correct position on grid; if tabulated points are used these must lie on the line)	$\mathbf{2}$		
(b)	$G T_{0}$ in range 14.0 to 16.0 or $15 \mathrm{k} \Omega \checkmark \checkmark[13.0$ to $17.0 \mathrm{k} \Omega, 14 \mathrm{k} \Omega$ or $16 \mathrm{k} \Omega \checkmark]$	$\mathbf{2}$		
		Total	$\mathbf{4} \quad$	4
:---				

\(\left.\begin{array}{|l|l|c|}\hline Question 2 \& \&

\hline (a) \& R is in parallel with concealed resistor \checkmark

thus combined resistance is less (than concealed resistor) \checkmark

since time measured is (directly) proportional to (circuit) resistance, T<T_{0} \checkmark\end{array}\right)\) max 2 \quad Total | $\mathbf{3}$ | |
| :--- | :--- |
| (b) | same number as $R \checkmark$ |
| | |

Question 3				
(a)	G is doubled \checkmark because T values are all halved (hence $\frac{1}{T}$ values doubled) \checkmark	$\mathbf{2}$		
(b)	$G T_{0}$ is unchanged \checkmark because G doubled (allow ecf from (a)) and T_{0} is halved \checkmark	$\mathbf{2}$		

