

Teacher Resource Bank

GCE Physics

Sample A2 EMPA:

• Mark Scheme

Copyright © 2009 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX. *Dr Michael Cresswell*, Director General.

Sample A2 EMPA Mark Scheme

Section A Task 1

Question 1			
(a)	accuracy:	I_1 and I_2 to 1 mA, I_2 about 1.75 \times $I_1 \checkmark$	1
(b)	accuracy:	I_3 and I_4 to 1 mA, $I_4 \approx I_3 \pm 1$ mA \checkmark	2
		$I_3 = I_1 \checkmark$	2
(C)	explanation:	$R_2 > R_1 \text{ or } 0/2 \checkmark$	
		when R_1 and R_2 are in parallel with R_2 , <i>I</i> increases significantly $[I_2$ much greater than I_1] \checkmark	2
		[when R_1 and R_2 are in parallel with R_1 , <i>I</i> increases by only a small amount (I_4 not much greater than I_3) \checkmark]	
(d)	explanation:	method 1	
		'background' = 3.65V ✓	
		computes 'corrected' values of V, all correct \checkmark	
		evaluates (at least) 2 ratios of 'corrected' V \checkmark	
		to show that the students suggestion is false \checkmark	
		variation on method 1	
		'background' = 3.65V ✓	
		computes 'corrected' values of V, all correct \checkmark	
		sketches 'corrected' V against n and makes (at least) 2 'half life' measurements \checkmark	
		to show that the student's suggestion is false \checkmark	
		method 2	4
		evaluates In (V/V), using 'uncorrected' or 'corrected' V \checkmark	
		all In (V/V) correct \checkmark	
		evaluates (at least) 2 differences between adjacent values of In (V/V) \checkmark	
		to show that the student's suggestion is false \checkmark	
		variation on method 2	
		evaluates In (V/V), using 'uncorrected' or 'corrected' V \checkmark	
		all In (V/V) correct ✓	
		sketches In (V/V) against n and produces best-fit line of negative, decreasing gradient \checkmark	
		to show that the student's suggestion is false \checkmark [allow 'suggestion is correct' if straight best-fit line drawn]	
		Total	9

Data for use in Question 1 (d) Section A Task 1

see method 1

n	V _{out} /V		ratios	1.00	+					
	uncorrected	corrected		0.80 V/V						
1	4.55	0.90		0.60 -		+				
2	4.20	0.55	0.611	0.40 -						
3	3.97	0.32	0.582	0.20			+			
4	3.83	0.18	0.563	0.00				-	+	+
5	3.75	0.10	0.556	0.00	1	2	3	4	5	6
6	3.70	0.05	0.500		-	-	2		2 11	Ŭ

see method 2

n	V _{out} /V	ln (V)	difference	1.600						
	uncorrected			$\ln{(\mathcal{V}/V)}$	+					
1	4.55	1.515				+				
2	4.20	1.435	0.0800	1.400			+			
3	3.97	1.379	0.0563					Ŧ	+	+
4	3.83	1.343	0.0359	1 000						
5	3.75	1.322	0.0211	1.200 1		2	3	4	5	
6	3.70	1.308	0.0134	, i i i i i i i i i i i i i i i i i i i	•	-	2		2	

or

or				0.000						
n	V _{out} /V	ln (<i>V</i>)	difference	0	1	2	3	4	5	6
	corre	ected				+				
1	0.90	-0.105	-	-1.000			+			
2	0.55	-0.598	0.4925	$\ln(\mathcal{V}/V)$				+		
3	0.32	-1.139	0.5416	-2.000						
4	0.18	-1.715	0.5754						т	
5	0.10	-2.303	0.5878	-3.000			п			+
6	0.05	-2.996	0.6931							
	-		•							

Ques	stion 2			
(a)	(i)	accuracy:	sensible time base setting recorded, with units \checkmark	1
	(ii)	accuracy:	evidence of working; cycle (or $n \times$ cycle) converted to s by multiplying by time base setting \checkmark	
			period, <i>T</i> , recorded to 0.1 ms \checkmark	max 2
			f from $\frac{1}{T}$, in range 800 Hz to 900 Hz 🗸	
(b)		method:	evidence of working; 3 measurements in mm or divisions, converted to V by multiplying by Y-gain sensitivity \checkmark	2
			$V_1 > V_2 > V_3, V_1 \approx 1.6 V \checkmark$	
(c)		explanation:	$rac{V_3(V_1+V_2)}{V_1V_2}$, no unit, 0.97 to 1.07 \checkmark	2
			[0.92 to 1.13 ✓]	
			Total	7
			Section A Task 1 Total	16

Section A Task 2

Question 1							
(a)	accuracy:	T_0 in range 40(.0) to	o 60(.0)(s) ✓		1		
(b)	tabulation:	<i>T</i> /s	R	/Ω ✓			
		deduct 1/2 for each i	deduct $\frac{1}{2}$ for each missing label or separator, rounding down				
	results:	6 sets of T and $R \checkmark$	6 sets of T and $R \checkmark \checkmark$				
		deduct (up to 2 marks) for each missing deduct 1 mark if no <i>T</i> (including T_0) is calculated from nT where <i>n</i> or $\Sigma n \ge 2$			5		
	significant figures:	all T (including T_0) t	o 0.1(0)s ✓				
	quality:	at least 5 points to (judge from graph,	+ 2 mm of straight providing this is s	t line of positive gradient uitably-scaled) ✓			

(C)	tabulation:	$\frac{1}{T}$ $\frac{1}{R}$	
	significant figures:	all of each set to either 3 sf or 4 sf	
	axes:	marked $\frac{1}{T}/\mathrm{s}^{-1}, \frac{1}{R}/\mathrm{k}\Omega^{-1}$, $[\Omega^{-1}] \checkmark \checkmark$	
		deduct $\frac{1}{2}$ for each missing label or separator, rounding down; no credit if axes reversed	
	scales:	points should cover at least half the grid horizontally \checkmark	10
		and half the grid vertically ✓	10
		(if necessary, a false origin should be used to meet these criteria; either or both marks may be lost for use of a difficult or non-linear scale or if the interval between the numerical values are marked on an axis with a frequency of > 5 cm)	
	points:	6 points plotted correctly (check at least two) $\checkmark\checkmark\checkmark$	
		marks are deducted for points > 1 mm from correct position and if poorly marked	
	line:	(ruled) best fit line of positive gradient \checkmark	
		Total	16

Section B

Question 1		
(a)	<i>y</i> -step at least 8 cm and <i>x</i> -step at least 8 cm \checkmark (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8 × 8 criteria) correct transfer of <i>y</i> -step and <i>x</i> -step data between graph and calculation \checkmark (mark is withheld if points used to determine either step > 1 mm from correct position on grid; if tabulated points are used these must lie on the line)	2
(b)	GT_0 in range 14.0 to 16.0 or $15 \mathrm{k\Omega} \checkmark \checkmark$ [13.0 to $17.0 \mathrm{k\Omega}$, $14 \mathrm{k\Omega}$ or $16 \mathrm{k\Omega} \checkmark$]	2
	Total	4

Question 2		
(a)	R is in parallel with concealed resistor \checkmark	
	thus combined resistance is less (than concealed resistor) \checkmark	max 2
	since time measured is (directly) proportional to (circuit) resistance, $T < T_0 \checkmark$	
(b)	same number as $R \checkmark$	1
	Total	3

Question 3		
(a)	G is doubled \checkmark	
	because T values are all halved (hence $\frac{1}{T}$ values doubled) \checkmark	2
(b)	GT_0 is unchanged \checkmark	2
	because G doubled (allow ecf from (a)) and T_0 is halved \checkmark	2
	Total	4

Question 4						
			ΔV	%		
	V ₁ /V	2.15	0.05	2.33%		
	V ₂ /V	1.15	0.05	4.35%		
	V ₃ /V	0.80	0.05	6.25%		
	$(V_1 + V_2)$	3.30	0.10	3.03%		
	$\frac{V_3(V_1 + V_2)}{V_1 V_2}$	1.068		15.95%		
(a)	percentage error in V_1 , V	V_2 and V_3 cor	rectly calculate	d, accept 2 sf ✓	1	
(b) (i)	absolute error in $(V_1 + V_2)$	′₂) = 0.1(0) V				
(ii)	percentage error in $(V_1 - V_2)$	+ V₂) correctly	y calculated, ad	ccept 2 sf ✓		
(iii)	percentage error in $\frac{V_3(I)}{I}$	$\frac{V_1 + V_2}{V_1 + V_2}$ calcu	lated from sun	n of percentage errors in	4	
	$V_1, V_2, V_3 \text{ and } (V_1 + V_2)$	✓ ✓				
	15.95%, 15.9% or 16.0%	6 ✓				
(c)	smooth best-fit line; two horizontal sections with smooth transition to non-linear central section with point of inflexion near mid-point \checkmark					
	when $\frac{V_3(V_1+V_2)}{V_1V_2}$ = 1.50	0, <i>f</i> = 600 ± 5	0Hz ✓		2	
(d) (i)	Y-shift ✓					
	by aligning the bottom of estimate the position of	f the trace wi the top of the	th a gridline the trace ✓	e student only has to		
(ii)	X-shift ✓					
	Y-gain sensitivity ✓				max 5	
(iii)	no advantage gained b Figure 11 as in Figure 1	ecause heigh 0 ✓	it of trace to be	measured is the same in		
	disadvantage because lowest horizontal grid lin	it is not certa e on the scre	in that zero vol en√	ts is aligned with the		
				Total	12	
				Section B Total	23	