

Teacher Resource Bank

GCE Physics B: Physics in Context:

Additional Sample Questions and Mark Schemes:

 PHYB1 - Harmony and Structure in the Universe

Copyright © 2008 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX. *Dr Michael Cresswell*, Director General.

ADDITIONAL SAMPLE QUESTIONS

This document provides a directory of past questions from the current AQA GCE Physics (Specification B), these questions may prove relevant/useful to both the teaching of the new AQA GCE Physics B: Physics in Context specification and the preparation of candidates for examined units. It is advisable when using these questions that teachers consider how these questions could relate to the new specification. Teachers should be aware of the different treatment of the Quality of Written Communication between the specifications.

For specific examples of the style and flavour of the questions which may appear in the operational exams, teachers should also refer to the Specimen Assessment Materials which accompany the specification.

A mark scheme has been produced which accompanies this document.

1 The diagram below shows one way of transmitting information from a transmitter to a receiver that is not directly in its line of sight.

(a) State the property of waves that enables the signals to be transmitted back to Earth by the ionosphere.

			(1)
(b)	(i)	Describe briefly one other method of transmitting signals to a receiver that is not in the line of sight of a transmitter.	
			(2)
	(ii)	State one advantage or disadvantage of the method you have described when compared with that in the diagram above.	
			(1)

(Total 4 marks)

2 Figure 1 shows a digital signal input to a long copper cable.

(b) **Figure 2** shows the output signal at the end of the long copper cable.

AQA/

(a)	State	2°.	
	(i)	the typical frequency range of human hearing;	
	(ii)	the base bandwidth required for the transmission of music with the frequency range you have quoted in part (a)(i);	
	(iii)	the minimum sampling rate required for the digital transmission of a signal with a base bandwidth of 6 kHz.	
			(3)
(b)	Digit prog DAE	tal Audio Broadcasting (DAB) is a technique in which radio stations transmit ramme material using digital rather than analogue signals. State two advantages that has over analogue transmission.	
	Adva	antage 1	
	Adva	antage 2	
			(2)

(c) The diagram below shows three radio stations **A**, **B** and **C** at three points on the Earth's surface.

Station **A** transmits radio signals to **B** and **C**. Describe the various paths that can be taken by the radio waves in order to travel between stations. For each path, state whether it is suitable for long or short wavelengths, or for any wavelengths. You can sketch paths onto the diagram above if you wish in order to illustrate your answer.

Two of the 7 marks in this question are for the quality of your written communication.

(7)

(Total 12 marks)

4 A satellite orbiting the Earth receives electromagnetic signals and then re-transmits them back to Earth at a frequency of 2.3 GHz.

(a) Calculate the wavelength of the re-transmitted signal.

Speed of electromagnetic waves in a vacuum, $c = 3.0 \times 10^8 \text{ m s}^{-1}$

Wavelength

(2)

(b)	State the region of the electromagnetic spectrum to which these waves belong.	
(c)	The satellite's signal is radiated by an antenna that resembles the satellite dishes used to receive television signals on Earth. The antenna dish is 0.60 m in diameter. Show that the angle at which the signal intensity falls to a minimum is about 12°.	(1)
(d)	The satellite is positioned 35 000 km from the Earth. The power received by the dish antenna on the Earth is 16 nW. Calculate the power that would be received at the dish if the satellite were to be repositioned at a distance of 17 500 km from Earth. Give your reasoning.	(3)
(e)	Power received The orbit of the satellite is not perfectly circular. At one moment it has a velocity component of 2.5 m s ⁻¹ towards the receiving antenna. Calculate the frequency shift that will be detected in the receiver on Earth.	(2)
(f)	Frequency shift State whether the received frequency will be higher or lower than the transmitted frequency.	(2)
		(1)

(Total 11 marks)

5 The diagram below shows the components of the transmitting stage of a simple audiocommunication system prior to the signal being transmitted. The signal path is from left to right.

(Total 7 marks)

6 The diagram below shows four radio stations **A**, **B**, **C** and **D** that are producing analogue signals with frequencies up to a maximum of 20 kHz. After sampling, the signals are being transmitted as digital signals down a single optical fibre.

- (a) Calculate the minimum frequency at which the signal from each station must be sampled for high quality transmission of data from the transmitters.
- (b) Explain why the use of a sampling frequency that is lower than the minimum sampling frequency could reduce the quality of the data received.

.....

(c) A single optical fibre can transmit 1.5×10^8 bits per second. Calculate the number of radio stations transmitting signals up to 20 kHz that could be transmitted using the single fibre. Each time a signal is sampled 8 bits have to be sent down the fibre.

Number of radio stations

(2)

(1)

(1)

(d) Explain how the digital signals from stations A, B, C and D are simultaneously transmitted down the optical fibre and why an optical fibre is preferred to a coaxial cable made from copper wire. You may draw a diagram to support your explanation if you wish.

Two of the 6 marks for this question are available for the quality of your written communication.

..... _____ (6) (Total 10 marks) By the end of this year it is expected that 85% of the population of the United Kingdom will be able to receive Digital Audio Broadcasts (DAB). The base bandwidth of these broadcasts depends on the frequency response of the human (a) ear. (i) State the normal frequency range for human hearing. (1) State the highest frequency that has to be transmitted for high-fidelity broadcasting (ii) of an orchestral concert. (1)

(i) Explain the term sampling and sketch a graph to show the conversion of the microphone output voltage into digital form.	Befo sam	by the output from a microphone has to be <i>bled</i> .	
(ii) What would be the minimum sampling frequency for the broadcast referred to in part (a)(ii)?	(i)	Explain the term <i>sampling</i> and sketch a graph to show the conversion of the microphone output voltage into digital form.	
(ii) What would be the minimum sampling frequency for the broadcast referred to in part (a)(ii)?			
(ii) What would be the minimum sampling frequency for the broadcast referred to in part (a)(ii)?			
State two advantages of DAB compared with FM and AM audio broadcasting.	(ii)	What would be the minimum sampling frequency for the broadcast referred part (a)(ii)?	(2 to in
State two advantages of DAB compared with FM and AM audio broadcasting.			(1
(((Total 7 mark State the difference between <i>transverse</i> and <i>longitudinal</i> waves	State	e two advantages of DAB compared with FM and AM audio broadcasting.	
((Total 7 mark State the difference between <i>transverse</i> and <i>longitudinal</i> waves			
State the difference between <i>transverse</i> and <i>longitudinal</i> waves.		(Te	(2 otal 7 marks
State what is meant by <i>polarisation</i> .	State	e the difference between <i>transverse</i> and <i>longitudinal</i> waves.	
State what is meant by <i>polarisation</i> .			
State what is meant by <i>polarisation</i> .			
State what is meant by <i>polarisation</i> .			
			(2
	State	e what is meant by <i>polarisation</i> .	
	State	e what is meant by <i>polarisation</i> .	
	State	e what is meant by <i>polarisation</i> .	

Explain why polarisation can be used to distinguish between transverse and longitudinal (c) waves. (2) (Total 6 marks) A musical note has a frequency of 512 Hz. Calculate the wavelength of the note. (a) the speed of sound = 330 m s^{-1} Wavelength = (2) Suggest why a doorway might cause such a note to diffract significantly. (b) (i) (1) A normal room doorway of width 0.81 m acts as an aperture for diffraction of (ii) sound. Calculate the angle to the straight through direction at which the note in

Angle =

(3)

(Total 6 marks)

part (a) would give the first minimum.

- 10 Short pulses of sound are reflected from the wall of a building 18 m away from the sound source. The reflected pulses return to the source after 0.11 s.
 - (a) Calculate the speed of sound.

Speed of sound

- (3)
- (b) The sound source now emits a continuous tone at a constant frequency. An observer, walking at a constant speed from the source to the wall, hears a regular rise and fall in the intensity of the sound. Explain how the **minima** of intensity occur.

(3)

(Total 6 marks)

11 (a) **Figure 1** shows how the displacement *s* of the particles in a medium carrying a pulse of ultrasound varies with distance *d* along the medium at one instant.

Frequency of oscillation

(3)

(b) An ultrasound transmitter is placed directly on the skin of a patient. **Figure 2** shows the amplitudes of the transmitted pulse and the pulse received after reflection by an organ in the body.

(iii) State the quantities that are kept constant in the experiment.

(2)

(7)

- (iv) Describe how you would obtain data using the apparatus you have sketched, and how you would use this data to test the relationship. You can gain up to 2 marks in this question for good written communication.
- (b) **Figure 1** shows a guitar. The length of the string **PQ** free to vibrate is 0.70 m. The string is tuned so that when its full length is plucked it vibrates at a frequency of 384 Hz, corresponding to G on the musical scale.

Figure 1

- (i) Show in the space below how the string vibrates when emitting its fundamental frequency.
 P
 Q
- (ii) Show in the space below how this string would vibrate when emitting a frequency three times its fundamental frequency.
 P
 Q

(1)

•

(iii) To play a higher note, the string is pressed so that the length free to vibrate is shorter. A fret (ridge) on the neck of the guitar ensures that the correct length is produced when the string is pressed as shown in Figure 2.

The second ridge from **P** has to be positioned so that when this ridge is used the frequency of vibration is 427 Hz, corresponding to A on the musical scale. Calculate the distance of the second ridge on the guitar from the point **Q**.

(2)

(Total 16 marks)

13 (a) The diagram shows a doorway with sound waves of wavelength 0.37 m incident upon it. The doorway is 0.80 m wide. An observer walks past the doorway along the line **XY**.

(i) At the point **P**, the observer notices a minimum in the volume of the sound. Calculate the angle θ .

(2)

(ii) The sound is changed for one of lower frequency but of the same amplitude. State

and explain how this will affect the variation of the loudness of the sound as heard by the observer walking along the line **XY**.

•••••	 	

(b) Monochromatic light is incident normally on a diffraction grating which has 3.0×10^5 lines per metre. A second order maximum is observed at an angle of 18° from the normal. Calculate the wavelength of the light.

(3)

(3)

(Total 8 marks)

14 The drawing below shows a standing wave set up on a wire of length 0.87 m. The wire is vibrated at a frequency of 120 Hz.

(a) Calculate the speed of transverse waves along the wire.

(3)

(b) Show that the fundamental frequency of the wire is 40 Hz.

(2)

(Total 5 marks)

15 The range of frequencies in the note emitted when a guitar string is plucked is shown in the sound frequency spectrum in the diagram below.

The lengths of the vertical lines represent the relative amplitudes of the frequencies present. The frequency with the highest amplitude is the fundamental frequency of the string.

(a) (i) Calculate the period of the fundamental frequency.

Period

(ii) Show, on the axes below, how the displacement of the centre of the string would vary with time if the string were emitting only the fundamental frequency. Give appropriate scales for the axes.

displacement

(2)

(1)

(b) Draw below the mode of vibration of the string if it were emitting only the third harmonic (second overtone) with the amplitude shown in the frequency spectrum. Use a suitable scale that shows the magnitude of the amplitude clearly.

			string			
	fixed end			t	fixed end	
	•			••••••		
						(2)
(c)	The length of the that determine the	string affects the f frequency of the	frequency of the e emitted note and,	mitted note. State t in each case, expla	two other factors in its effect.	
	Factor 1					
	Effect					
	Factor 2					
	Effect					
						(2)
(d)	State one effect o	f transmitting this	note using a base	bandwidth of 100	Hz to 1000 Hz.	
						(1)
					(Total 8 r	narks)
A w	nite-light source illu	minates a diffract	tion grating that ha	as 6.30 × 105 lines	per metre. The	

light is incident normally on the grating.

(a) Show that adjacent lines in the grating are separated by a distance of about 0.0016 mm.

(1)

(b) **Table 1** shows the diffracting angles measured from the normal for the visible spectral orders using this grating. The angles are given for the red and blue ends of each spectrum.

Table 1

	First order	Second order	Third order
red	25.4°	59.0°	not possible
blue	15.0°	31.1°	50.0°

(i) Use the value for the first order diffracting angle to calculate the wavelength of the red light.

Wavelength of the red light

(ii) Describe carefully the appearance of the complete diffraction pattern on the screen. You may draw a sketch of the pattern to help your explanation if you choose.

	(4)
(То	tal 8 marks)

(3)

17 Figure 5 shows the Afristar satellite. Afristar orbits the Earth and is used to broadcast high quality digital signals to parts of Africa. The area over which signals can be received is called the .footprint. of the satellite.

(a) (i) The satellite broadcasts at a frequency of 1.5 GHz. Calculate the wavelength of the transmitted signal.

speed of electromagnetic radiation, $c = 3.0 \times 10^8 \text{ ms}^{-1}$

Signal wavelength.....

(ii) The satellite is 36 000 km above the Earth's surface. The footprint of the satellite has an area of radius 3500 km. Calculate the angle, θ , indicated on **Figure 5** over which signals can be detected.

Angle

(2)

(2)

(iii) Use your answers to part (i) and part (ii) to calculate the maximum diameter of the transmitting dish that is required on the satellite. Assume that the edge of the footprint corresponds to the diffraction minimum.

(2)

AQA

(iv) The radio signals are transmitted to the satellite from a ground station that also has a satellite dish. The station is 36 000 km from the satellite. Explain why this dish has a larger diameter than the dish on the satellite. (1) (b) The satellite uses time division multiplexing to transmit its multi-channel digital audio services. Explain what is meant by time division multiplexing and go on to suggest why the satellite uses this technique. Two of the 7 marks in this question are available for the quality of your written communication. _____ _____ (7)

(Total 14 marks)

(a) State the conditions necessary for a stationary wave to be produced.
(3)
(b) The diagram shows a stationary wave on a stretched guitar string of length 0.62 m.
0.62 m
0.62 m
Not to scale

The speed of transverse waves along the string is 320 m s⁻¹. Calculate the frequency of the note being played.

Frequency.....

(3)

(Total 6 marks)

- 19 Light from a characteristic part of the hydrogen spectrum, and coming from a stationary source, has a wavelength of 6.56255×10^{-7} m. Light from the same part of the hydrogen spectrum, and coming from a distant star, has a wavelength of 6.56285×10^{-7} m.
 - (a) (i) Calculate the difference in frequencies of the light from the two sources. speed of electromagnetic radiation, $c = 3.00 \times 10^8 \text{ m s}^{-1}$

(3)

(ii) Calculate the speed of the distant star, relative to the Earth.

(b) Describe how the light from the star could be collected and analysed in order to find its wavelength. You need not describe the apparatus used but you should specify the measurements to be made and how the wavelength is calculated. You can gain up to 2 marks in this question for good written communication.

		(6)
(c)	Describe the importance of Hubble's Law in understanding the likely future of the universe.	(0)
		(2)

(Total 13 marks)

20 The drawing below shows some of the principal lines in the visible *emission line spectrum* of helium.

	389	9 447	502	588	668 —		λ / nm
(a)	Expla	in what is mea	ant by the term	emission line s	pectrum.		
(b)	I joht	emitted by a c	ample of evoit	11.1.	. 1.4	h a alit and ana	
	using order	a diffraction g images of the	grating with 1.0 447 nm and 58	The formation 10^{6} lines m 10^{6} lines m 10^{6} nm lines.	¹ . Calculate the a	angle between t	lysed he first
(c)	(i)	calculate the	frequency of t	he 588 nm lines.	The speed of lig	angle between t ht is 3.00×10^8	lysed he first m s ⁻¹ .
(c)	(i)	Calculate the Write down th	frequency of t frequency of t he colour and t	the order of mag	The speed of light	ton energy of the formula the structure of the structure	lysed he first m s ⁻¹ .

(d) In observing the helium emission spectrum of a star, the "588 nm" line is measured to be 589 nm. The star is at a distance of 11 Mpc from Earth. (The Mpc is a unit of distance used in astronomy). The speed of light is 3.00×10^8 m s⁻¹. Assuming that each measurement of wavelength is accurate, explain how the (i) discrepancy between the observations arises. _____ (3) Show that the shift in wavelength from 588 nm to 589 nm corresponds to a (ii) frequency shift (Δf) of approximately 8.7 × 10¹¹ Hz. (2) Calculate the speed with which the star is moving (as measured from Earth). (iii) (2) Using the value calculated in (iii) calculate a value for the Hubble constant in (iv) $m s^{-1} Mpc^{-1}$. (2) (Total 19 Marks) Light arriving at the Earth from a distant galaxy is observed to be *red shifted*. (a) (i) Explain, in terms of spectral lines, what the term red shift means. (1)

(ii) Explain how the red shift is consistent with the movement of distant astronomical objects away from us.

Two of the 6 marks in this question are for the quality of your written communication.

- (b) The wavelength of a given line in the spectrum is 5.40×10^{-7} m when measured using a light source in a laboratory on Earth. When the light from the distant galaxy is used for the measurement, the wavelength is found to be 5.61×10^{-7} m.
 - (i) Show that this wavelength change corresponds to a frequency shift of about 2.1×10^{13} Hz.

speed of light in a vacuum, $c = 3.0 \times 10^8$ m s⁻¹

Frequency shift

(3)

(6)

(ii) Calculate the speed of the galaxy relative to Earth.

Galactic speed(3)

(iii) Estimate the distance, in m, between the galaxy and the Earth.

Hubble constant = 65 km s⁻¹ Mpc⁻¹ 1 pc (parsec) = 3×10^{16} m

Galactic distance

(3)

(Total 16 marks)

22 One spectral line emitted by a helium-filled discharge tube has a wavelength of 590 nm when measured using a source in a laboratory on Earth. The same spectral line measured using light from a distant galaxy has a wavelength 650 nm.

the speed of electromagnetic radiation in free space = 3.0×10^8 m s⁻¹ State the name of the effect that gives rise to this change in wavelength.

-(1)
 - (ii) What do these measurements of wavelength suggest about the nature of the universe?

(1)

(b) Calculate the velocity of the galaxy relative to Earth. (hint: $\frac{\Delta\lambda}{\lambda} = \frac{\Delta f}{f}$)

Velocity of galaxy

(a)

(i)

- (c) The spectral lines are analysed using a diffraction grating with 4.5×10^5 lines per m.
 - (i) Calculate the angle at which the spectral line of wavelength 590 nm produces a maximum in the second order spectrum.

Angle

(ii) Explain how the diffraction grating produces the bright spectral lines for a particular wavelength.

You may wish to draw a diagram to help you explain.

Two of the 7 marks for this question are available for the quality of your written communication.

 (7)
()

(Total 14 marks)

(3)

23	(a)	(i)	State the difference between the appearance of a continuous emission spectrum and that of a line emission spectrum.	
				(1)
		(ii)	State one laboratory source of a continuous spectrum.	
				(1)
	(b)	The s the n	spectrum of the Sun consists of a continuous spectrum crossed by dark lines. State are for this type of spectrum and explain how the dark lines arise.	
		Spec	trum name	
		Expl	anation	
				(3)

(Total 5 marks)

- 24 A galaxy is 4.5×10^{24} m from the Earth.
 - (a) Show that this galaxy is likely to be moving at a speed of about 1×10^7 m s⁻¹ relative to the Earth.

Hubble constant, $H = 65 \text{ kms}^{-1} \text{Mpc}^{-1}$

1 parsec (pc) = 3.1×10^{16} m

- (b) The galaxy emits light of wavelength 580.0 nm as it moves away from the Earth. This light is observed on the Earth.
 - (i) Calculate the change in wavelength of this light due to the movement of the galaxy.

[Hint: $\Delta\lambda/\lambda = \Delta f/f$]

Speed of light in a vacuum, $c = 3.0 \times 10^8 \text{ ms}^{-1}$

Change in wavelength

(3)

(ii) Calculate the wavelength of the light from the galaxy when observed on the Earth.

Observed wavelength

(2)

(Total 8 marks)

25 Fill in the blanks in the following table which shows some of the characteristics of several types of electromagnetic radiation.

Radiation type	Typical wavelength in air/ m	Radiation source
Radio waves	1.5×10^{3}	High frequency alternating current
	5.0×10^{-4}	Hot bodies
Visible light		Excited atoms
	$5.0 imes 10^{-13}$	

(Total 3 marks)

26 It is believed that the Universe is expanding with the galaxies receding from each other. The diagram below shows some of the experimental data which support Hubble's Law. Each point on the scatter diagram represents a galaxy: *v* is the recession speed of a galaxy and *d* is its distance from Earth.

(a) Use the data on the graph above to show that the Hubble constant H is about 65 km s⁻¹ Mpc⁻¹.

(b) A galaxy which can be seen in the constellation of Ursa Major has a recession speed of $17\ 000\ \text{km}\ \text{s}^{-1}$. Calculate its distance from Earth in Mpc.

Distance from Earth Mpc

(2)

(3)

(c) An estimate for the age of the Universe can be found by assuming that recession speeds have been constant since the Big Bang. The age, T, of the Universe is given by the time it has taken for a given galaxy, travelling at speed v, to recede a distance d from ours. Hence

$$T = \frac{d}{v} = \frac{1}{H}$$

Use the above equation to estimate the age of the Universe in years.

1 light-year = 9.5×10^{15} m 1 pc = 3.3 light-years 1 year = 3.2×10^7 s

Age of the universe years

(3)

(d) The recession speed of a galaxy can be measured by comparing its emission spectral lines with those from an equivalent light source on Earth. Explain why this comparison enables the recession speed to be calculated and describe how the measurements are used to find the recession speed.

Two of the 6 marks in this question are for the quality of your written communication.

(6)

(Total 14 marks)

AQA

27 (a)		Up q	uarks have a charge of $+\frac{2}{3}e$ and down quarks have a charge of $-\frac{1}{3}e$.	
		(i)	State the number of each type of quark in a neutron.	
		(ii)	Explain in terms of charge why a neutron has this composition.	(2)
				(1)
	(b)	(i)	A neutron decays by β emission. Complete the following decay equation, naming all the particles produced in the decay.	
			neutron $\rightarrow \beta$ (electron) +	(2)
		(ii)	State and explain the change of quarks which occurs when this decay happens.	
				(2)

(Total 7 marks)

28 A beam of α particles irradiates a metal foil. The paths of four α particles near the nucleus of a metal atom are shown in the diagram. Which one of the paths must be incorrect?

(1)

(Total 1 mark)

29	(a)	State the combination of quarks that makes up a neutron.	
	(b)	When a neutron decays, a down quark changes into an up quark as shown by the following reaction.	(1
		$d \rightarrow u + \overline{e} + \overline{v}_e$	
		(i) Show, in terms of the conservation of charge, baryon number and lepton number, that this transformation is permitted.	
			(3
		(ii) State the products arising from the decay of an anti-down quark, \overline{d} .	
			(1)
		(Total 5	marks
30	Lept	tons, mesons and baryons are three classes of sub-atomic particles.	
	(a)	Some classes of particles are fundamental; others are not. Circle the correct category for each of these three classes.	
		leptons fundamental/not fundamental	
		mesons fundamental/not fundamental	
		baryons fundamental/not fundamental	(1)
	(b)	Name the class of particles of which the proton is a member.	
			(1)
	(c)	By referring to the charges on up and down quarks explain how the proton has a charge of $+1e$.	

31 A negative pion (π^{-}) is a meson with a charge of -1e.

State and explain the structure of the π^{-} in terms of up and down quarks.

(Total 3 marks)

32 A physicist, who is attempting to analyse a nuclear event, suggests that a π^- particle and a proton collided and were annihilated with the creation of a neutron, a π^+ particle, and a K⁻ particle.

 π and K particles are mesons. The baryon and lepton numbers of both these mesons are zero.

(a) Write down the equation that represents this interaction.

(1)

(b) Show, in terms of the conservation of charge, baryon number and lepton number, that this transformation is permitted.

(Total 5 marks)

- 33 The diagram below shows a single atomic nucleus that is part of a thin foil. A, B and C are the paths of three α -particles directed at the foil as shown. All three paths are approaching close to the nucleus.
 - (a) Complete the diagram carefully showing the subsequent paths of the α -particles.

(b) Suggest **two** pieces of scientific information that can be gained by bombarding matter with particles in this way.

(Total 5 marks)

34 The list of sub-atomic particles below contains particles that are either hadrons or leptons:

electron muon neutrino neutron pi-meson proton

(a) Complete the table below by adding the names of the particles to the correct box.

Hadrons	
Leptons	
	(4)

(b) Underline the names of the particles that are baryons.

(2)

(Total 6 marks)

35 (a) A particle is made up from an anti-up quark and a down quark. Name the classification of particles that has this type of structure. (i) (1) (ii) Find the charge on the particle. (1) (iii) State the baryon number of the particle. (1) (b) A suggested decay for the positive muon (μ^+) is $\mu^+ \rightarrow e^+ + v_e$ Showing your reasoning clearly, deduce whether this decay satisfies the conservation rules that relate to baryon number, lepton number and charge. Baryon number Lepton number Charge (3)

(Total 6 marks)

36 Figure 1 is a block diagram showing part of a telephone system.

(b) **Figure 2** shows the signal from the microphone.

(i) Calculate the frequency of this signal.

Frequency =

(2)

(ii) State the minimum sampling rate needed to allow effective transmission of this signal.

 (iii) Explain how time division mutiplexing may be used to send many audio signals 'simultaneously' along a transmission medium. You may draw a labelled diagram to help your explanation.

Two of the 6 marks in this question are available for the quality of your written communication.

(Total 15 marks)

(6)

MARK SCHEMES

The following document has been produced to support the Teacher Resource Bank item *GCE Physics B: Physics in Context – Harmony and Structure in the Universe / Directory of Relevant Questions / Version 1.0.*

Teachers and students should be aware that the treatment of Quality of Written Communication (QWC) in the new AQA GCE Physics B: Physics in Context specification may differ from that used in some of the questions in this document. Please refer to the latest version of the Specimen Assessment Materials which accompany the new GCE Physics B: Physics in Context specification for the treatment of QWC.

Question 1			
(a)	refraction or total internal reflection	B1	1
(b) (i)	use of a land line such as fibre optic cable or copper cable	B1	
	radio waves beamed up to a satellite and then back down to the receiver	B1	2
(ii)	signals using Figure 1 depend on conditions in ionosphere or signal may fluctuate or signals using land line or satellite more reliable or signals using fibre optics more secure	B1	1
		Total	4

Que	estion 2			
(a)	(i)	digital has two possible values/no intermediate values shown	B1	1
	(ii)	signal quality unaffected by noise/(e-m) interference	M1	
		zeros and ones still discernible/can be regenerated	A1	
		multiplexing possible/efficient use of transmitting medium/more data transferred (in same time)	M1	4
		many signals can be sent 'simultaneously' (with fast sampling rate)/use of compression techniques	A1	4
		condone 'digital data secure'	M1	
		more difficult to 'tap' digitally/decode	A1	
(b)	(i)	noise/(e-m) interference	M1	
		superposes with/degrades (original) signal	A1	
		attenuation/voltage drops/energy loss/fading/energy absorbed	M1	4
		energy dissipated in the transmitting medium/wire defects/ resistance	A1	
		the use of Physics terms is accurate; the answer is fluent/well argued with few errors in spelling, punctuation and grammar and candidate has obtained at least 3 for Physics	2	
		the use of Physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and candidate has obtained at least 2 for Physics	1	max 2
		the use of Physics terms is inaccurate; the answer is disjointed with significant errors in spelling, punctuation and grammar	0	

(ii)	optical fibre	B1	1
(iii)	$0.05 \le \text{max}$ value for zero ≤ 0.2 any sensible minimum including negative values	B 1	
	$0.25 \le \text{min}$ value for one ≤ 0.35 any sensible maximum	B 1	2
	allow two marks if their range gives no spurious values of 1 or 0/values must be exclusive to one range allow 0.5 ± 0.2 etc		
		Total	14

Question 3						
(a)	(i)	range within 15	– 20 000 Hz (high <i>f</i> mu	ist equal or exceed	B1	1
	(ii)	$10 \mathrm{kHz};$ (low $f \mathrm{m}$	ust be equal to or belo	w 50 Hz)	B 1	1
	(iii)	same as candidat acceptable)	te range in (a)(i) (diffe	rence or range	B1	1
		12 kHz [allow sa	mples per second/per	minute as unit]		
(b)		two advantages of	e.g. easy elimination of	f noise [not no noise]	B 1	
		narrower bandwa spectrum, opport argument, not di	idth, more channels in tunity to multiplex, etc stance argument]	available) [not fibre optic	B 1	2
(c)		three marks ma	x for three correct rou	tes + 2 max for two	B 1	
		correct waveleng	gths for these routes - s	stop marking	B 1	
		physics after thir	d route response		B 1	
		station $A \rightarrow B$	line of sight	long and short*		
			through earth	very long		
			cable	long		
			etc			
		station $A \rightarrow C$	diffraction	long		may 5
			reflection	long		max 5
			satellites	short		
			refraction	long and short*		
			sporadic E/ducting etc	short		
			do not allow any route twice etc			
		(*) candidate car wavelength' etc.	n write 'long and /or sh but sense must be 'all	nort' or 'any wavelengths'		

Total 12	
B0	the use of Physics terms is inaccurate, and the answer is disjointed with significant errors in spelling, punctuation and grammar award for 0 or 1
B1 max 2	the use of Physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor award for 2 or 3 only
B2	the use of Physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar award for 4+ only
B2	the use of Physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar award for 4+ only the use of Physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are

Question 4			
(a)	recognises GHz as 10 ⁹	B1	2
	$\lambda = 3 \times 10^8 / 2.3 \times 10^9 = 0.13 \ [0] m$	B1	
(b)	microwaves [e.c.f. from (a)]	B1	1
(c)	use of $\sin\theta = \lambda / b$	M1	
	= 0.13/0.6 = 0.217 [e.c.f. from (a)]	C1	3
	$\theta = 12.5^{\circ}$	A1	
(d)	mention of/evidence of use of inverse-square law	B1	2
	64 nW	A1	2
(e)	$\Delta f = f_V/c = 2.3 \times 10^9 \times 2.5/3 \times 10^8$	M1	r
	= 19.2 Hz	A1	2
(f)	higher	B1	1
		Total	11

Que	stion 5			
(a)	(i)	microphone/telephone mouthpiece	B1	
	(ii)	modulator [or analogue- digital converter if digital answer]	B 1	3
	(iii)	amplifier/booster [or modulator if digital answer]	B 1	
(b)		mention of carrier (as wave / frequency or bald)	B1	
		mention of frequency or amplitude modulation	B1	
		by signal to be transmitted	B1	4
		modulation enables more information to be transmitted <i>or good Physics alternative - may include diagram e.g. of modulated signal</i>	B1	
			Total	7

Question 6			
(a)	40 kHz	B1	1
(b)	higher frequencies will not be recognised/transmitted/lost or some peaks/troughs /variations will be missed	B 1	1
(c)	number of bits required per second for each station = $40\ 000 \times 8$ (e.c.f. from (a))	C1	
	total channels = 1.5×10^8 /bits per second required for each station (answer 468 gets both marks n.b. not 469 (e.c.f. from(a) 1.875×10^7 /their (a), rounded down)	A1	2
	allow B1 only for use of 20 kHz and arriving at 937 stations		
(d)	any 2		
	each signal is sampled in turn	B1	
	use time division multiplexing	B1	2
	diagram to aid explanation	B 1	2
	signals sent in sequence ABCDABCD	B 1	
	signals only use fibre for part of the time	B1	
	any 2		
	fibre-cable energy losses are less or transmit further without repeater/boosters/amplifiers or less frequent repeaters/boosting	B 1	
	less noise/interference (condone no noise but not that it reduces noise)	B 1	2
	higher information handling capacity or greater number of stations can use a single fibre	B 1	
	signal more secure/cannot be tapped	B1	
	at least 3 marks for Physics + use of Physics is accurate	2	max 2

the answer is fluent/well argued with few errors in spelling, punctuation and grammar		
at least 1 mark for Physics + some incorrect work the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor	1	
the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar	0	
	Total	10

Que	stion 7			
(a)	(i)	15 to 20 000 Hz allow min 1050 Hz and max 1525 kHz	B1	1
	(ii)	15 000 Hz/upper limit from (a)(i)	B1	1
(b)	(i)	<i>diagram showing a continuous signal (plotted against time)</i> <i>with sampling ordinates</i>	B1	2
		signal sampled at regular time intervals (<i>clearly on graph or in words</i>)	B1	2
	(ii)	30 000 Hz / 2 × answer in (a)(ii)	B1	1
(c)		less powerful transmitters (needed for DAB)/signal travels further smaller aerials needed to receive signals	B1	
		better quality/clearer sound (heard by listener)	B1	
		easier reduction of interference (accept less background noise)	B1	2
		more stations available (in a given bandwidth)/more data transferred in the same time	B1	
		any 2 from 5 points		
			Total	7

Question 8			
(a)	transverse: vibration/displacement/disturbance not movement is perpendicular to direction of travel	B1	
	longitudinal: vibration/displacement/disturbance not movement is parallel to (same) direction of travel	B1	2
	C1 for idea of transverse and longitudinal being perpendicular		
(b)	restriction of vibration/idea of how polarisation occurs	B1	
	single plane/same orientation – diagram may help	B1	2
(c)	only transverse can be polarised/longitudinal cannot	B1	
	idea of being able to restrict vibration to single plane or longitudinal not being perpendicular to motion or longitudinal vibrating in direction of travel	B1	2
		Total	6

Question 9			
(a)	$v = f\lambda \text{ or } 330/512$	C1	2
	0.64(5) m	A1	2
(b) (i)	very approximately size of doorway is same as λ of note	B1	1
(ii)	$\sin \theta = \lambda / b \text{ seen}$	C1	
	$\theta = \sin^{-1}$ (answer to (a)/0.81) or sin $\theta =$ ans to (a)/0.81	C1	3
	52.7°/52.8°/52.2°/53°	A1	
		Total	6

Question 10			
(a)	distance travelled = $2 \times 18 \mathrm{m}$	C1	
	speed = $36/0.11$	M1	3
	= 327 m/s [164 m/s scores 2]	A1	
(b)	mention of standing waves or superposition or interference	B1	
	mention of two waves, opposite directions	B1	3
	because they are permanently out of phase, permanently destructively interfere, permanently in antiphase	B 1	
		Total	6

Ques	tion 11			
(a)	(i)	$2(.0) \times 10^{-5}$ m (i.e. allow 1 s.f.)	B1	1
	(ii)	$\lambda = 4(.0) \times 10^{-4} (m)$	B 1	
		$v = f\lambda$ (condone $c = f\lambda$)	C1	
		3.0 MHz s.f. penalty applies		3
		allow e.c.f. for omitting 10^{-4} (300 Hz) but s.f. penalty applies for e.g. 0.3 kHz)	A1	
(b)	(i)	ultrasound/wave/pulse/energy spreads out from the transmitter (beam not uni-directional)	B1	
		energy is absorbed by(or lost to) the transmitting medium/tissue/body	B 1	
		incident ultrasound/wave/pulse/energy is not all reflected (by the reflecting object)		max 2
		or some is transmitted /absorbed by the organ or is reflected at different angles (so does not return to detector)	B1	
		some ultrasound/wave/pulse/energy reflected by the skin since gel was not used	B 1	
	(ii)	distance travelled 1200×95 or $114\ 000$ or $0.114\ m$ (i.e. mark for use of velocity \times time ignoring powers of 10)	C1	2
		0.057 m (allow answers in range 0.055 to 0.057)	A1	
			Total	8

Ques	tion 12			
(a)	(i)	mass per unit length	B1	1
	(ii)	means of supporting and tensioning string	B1	2
		means of measuring frequency	B1	2
	(iii)	length	B1	2
		tension	B1	2
	(iv)	statement of how vibrations are created	B1	
		statement of how f is determined	B1	
		statement of how mass per unit length is determined	B1	
		repeat for other values of mass per unit length	B1	max 5
		plot appropriate linear graph	B1	
		straight line through the origin	B1	
		method of measuring length of tension	B1	

		the use of Physics terms is accurate, the answer is fluent / well argued with few errors in spelling, punctuation and grammar	2	
		the use of Physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor	1	max 2
		the use of Physics terms is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar	0	
(b)	(i)	one loop	B1	1
	(ii)	three loops	B1	1
	(iii)	correct use of ratios	C1	r
		distance from $\mathbf{Q} = 0.63 \mathrm{m}$	A1	2
			Total	16

Question 13			
(a) (i)	$\sin\theta = \lambda/b$	C1	2
	28°	A1	2
(ii)	lower frequency implies greater wavelength	B1	
	θ is larger / sound diffracted through larger angle	B1	3
	reference to equation / diffraction increases with increasing wavelength	B1	
(b)	$d\sin\theta = n\lambda$	C1	
	correct substitution including $d = 1/3 \times 10^5$ and $n = 2$	C1	3
	$5.2 \times 10^{-7} m$	A1	
		Total	8

Question 14			
(a)	$\lambda = 0.58(m)$ or $(2/3 \times 0.87)$	C1	
	$c = f\lambda$ or substituted values	C1	3
	$69.6 (70) \mathrm{m s^{-1}}$	A1	
(b)	$\lambda = 0.87 \times 2$ or $\lambda = 1.74$ or in formula	M1	
	69.6/ 1.74 or 70/1.74 = 40.2	A1	
	or the drawing shows third harmonic (second overtone)	M1	2
	so $120 = 3 \times f_0$ so $f_0 = 40$ Hz	A1	
	do not allow just 120/3		
		Total	5

Question 15			
(a) (i)	$6.7 (6.67) \times 10^{-3} s$	B 1	1
(ii)	at least one complete cycle shown (may be a poor attempt) and period 6.7×10^{-3} s (e.c.f.) (may be a decaying amplitude) or amplitude = 3 mm clear from scale (must be constant amplitude)	C1	
	at least two complete cycles shown (must be reasonable attempt at sine wave and show constant half periods and constant amplitude) both period and amplitude shown period 6.7×10^{-3} s (e.c.f.) and amplitude = 3 mm	A1	2
	condone silly scales up applies		
(b)	third harmonic: three loops shown (condone wave 'snapshot')	B1	2
	maximum amplitude 1 mm clear from scale	B1	
(c)	tension in the string (condone tighter string)	M0	
	increased tension increases frequency (not leads to faster oscillations) or frequency is proportional to $\sqrt{\text{tension}}$ (not \sqrt{T} unless <i>T</i> is defined)	A1	
	plus any one from:		
	mass per unit length of the string	M0	
	increases mass per unit length reduces frequency or frequency is inversely proportional to $\sqrt{\text{mass per unit length}}$ or frequency is proportional to $\frac{1}{\sqrt{\text{mass per unit length}}}$	A1	2
	(not $1/\sqrt{\mu}$ unless μ defined)		
	density of the material (for same thickness) condone heavier string/more weight or more mass	M0	
	increased density etc. reduces frequency	A1	
	allow B1 for stating tension and mass per unit length as factors without correct effects	B1	

		Total	8
	consequence is not essential but saying that the note will sound lower is 'talk out' allow quieter or poorer quality as consequences		
(d)	higher harmonics/frequencies (above 1000 Hz) are missed/ not transmitted or only frequencies between 100 Hz and 1000 Hz are transmitted	B1	1

Question 16			
(a)	separation = $1/630000$	B1	1
(b) (i)	quote $n\lambda = d\sin\theta$	C1	
	$\lambda = 1.59 \times 10^{-6} \times \sin(25.4)$	C1	3
	$= 6.8 \times 10^{-7} \mathrm{m} \mathrm{ or} 6.8 \times 10^{-4} \mathrm{mm}$	A1	
(ii)	central maximum/zeroth order mentioned	B1	
	central maximum is white	B1	
	describe/draw 1 st /2 nd orders colours in correct order	B1	
	third order overlap	B1	max 4
	symmetry of pattern	B1	
	dispersion change	B1	
	fainter away from centre	B1	
		Total	8

Que	stion 17			
(a)	(i)	$\lambda = 3 \times 10^8 / 1.5 \times 10^9$	C1	2
		$\lambda = 0.20 m$	A1	2
	(ii)	$\theta/2 = \sin^{-1} (\text{or tan}^{-1}) 3500/36000 \text{ or } \theta = \sin^{-1} 7000/36000$	C1	2
		$=\sin^{-1}(0.098) = 5.6^{\circ}$ so $\theta = 11.2^{\circ}$	A1	2
	(iii)	b = 0.2 /0.098 [e.c.f. (a)(i)/0.5 × sin (a)(ii); condone use of θ or $\theta/2$]	C1	2
		= $2.0(4)$ m [condone use of 5.6° c.f. from (a)(ii)]	A1	
	(iv)	satellite small/need to concentrate energy on it so θ small too/less diffraction with bigger dish	B1	1

(b)	binary code/01 etc. required		
	many samples transmitted down same		
	channel or at same frequency/in short period of time		
	sampling process required		
	signals transmitted in sequence		
	good description or diagram of process		
	method is secure		max 5
	cheaper/lighter/more efficient than multi-transmitter/more		
	satellites without tdm		
	considers bandwidth or bit rate issue		
	calculates no of channels available from reasonable estimates of		
	bandwidth and frequency range		
	use of Physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for Physics	B2	2
	use of Physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for Physics	B 1	1
	use of Physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar	B0	0
		Total	14

Question 18			
(a)	superposition (of progressive waves)	B1	
	incident wave and reflected wave/wave reflected through 180°/waves travelling in opposite directions	B1	_
	same frequency/wavelength	B1	3
	in same medium	B1	
	any 3 out of 4 points		
(b)	$f = c/\lambda$	C1	
	$\lambda = 1.24$	C1	3
	f = 258 Hz	A1	5
	e.g. $f = 512$ gets 1 mark		
		Total	6

Question 19			
(a) (i)	$f = c/\lambda$	C1	
	one frequency correct to appropriate significant figures (4.57140 or 4.57118)	C1	3
	$2.1 imes 10^{10} \mathrm{Hz}$	A1	
(ii)	$v = \Delta f/f$	C1	2
	$1.4 \times 10^4ms^{-1}$	A1	2
(b)	light collected by telescope	B1	
	diffracted by grating	B1	Λ
	angle of diffraction measured	B1	4
	wavelength given by $d \sin \theta / n$	B1	
	the use of Physics terms is accurate, the answer is fluent / well argued with few errors in spelling, punctuation and grammar	2	
	the use of Physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor	1	max 2
	the use of Physics terms is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar	0	
(c)	it identifies the speed of recession	B1	
	establishes that more distant galaxies recede faster	B1	max 2
	allows consideration of permanent expansion or eventual collapse	B1	
		Total	13

Question 20			
(a)	mention of gas/atoms/electrons being excited	B1	
	photons emitted	B1	
	discrete wavelengths/frequencies/photon energies	B1	
	characteristic of element/gas	B1	max 3
	electrons change energy levels	B1	
	observed with spectrometer/scope or using diffraction grating	B1	
(b)	$n\lambda = dsin\theta$ seen or used	C1*	
	do not allow these marks * if $sin\theta = \lambda/b$ used	CI	
	$d = 1/N$ or $\times 10^{-6}$ seen or obviously used	C1	max 3
	$\theta_1 = 26.5(5)^\circ \text{ (allow } 0.0256^\circ\text{)}$	C1	
	$\theta_2 = 36.0(2)^\circ \text{ (allow } 0.0337^\circ\text{)}$	C1	
	$\Delta \theta = 9.5^{\circ} \text{ or } 9.4(7)^{\circ} \text{ or } 9.4^{\circ}$	A1*	1
(c) (i)	$5.1(0) \times 10^{14} \mathrm{Hz}$	B1	1
(ii)	yellow-orange	B1	2
	$10^{-20} - 10^{-18}$	B 1	2
(d) (i)	Doppler effect	B1	
	star receding from Earth/Earth from star/Universe expands	B1	3
	apparent increase in wavelength/decrease in frequency/ red shift	B 1	
(ii)	$5.102 \dots \times 10^{14}$ and $5.093 \dots \times 10^{14}$ seen allow $3.0 \times 10^{8}/588 \times 10^{-9}$ and $3.0 \times 10^{8}/589 \times 10^{-9}$ process of subtraction shown	C1	
	condone candidates not writing down more than 5.10 and 5.09 and subtracting (on calculator) no u.p.	A1	
	or $\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda}$	M1	2
	correct substitution for $f(5.1 \times 10^{14})$ with e.c.f.		
	$\Delta\lambda$ (1.0×10^{-9})	A1	
	$\lambda (588 imes 10^{-9})$		

(iii)	$\frac{\Delta f}{f} = \frac{v}{c} \text{ or } \frac{\Delta \lambda}{\lambda} = \frac{v}{c}$	C1	
	or correct substitutions for $\Delta f [= (d)(ii)]$ f [= (c)(i)] $c [= 3.0 \times 10^8]$ etc		2
	$5.1 \times 10^5 \text{ m s}^{-1}$ or 510 km s^{-1}	A1	
(iv)	H = v/d or correct substitution of values	C1	
	4.64×10^4 or (d)(iii)/11 no u.p.	A1	2
		Total	19

Question 2	1		
(a) (i)	spectral line moved to longer wavelength position (allow 'to red end of spectrum')	B1	1
(ii)	mention of Doppler effect	B1	
	expansion of universe/Big Bang	B 1	
	wavelength increased (or frequency decreased)	B 1	
	successive 'peaks' of wave emitted at increasing distance from Earth [allow 'wave stretched']	B1	max 4
	wavelength observed on Earth increases compared with source stationary	B1	
	award for 2+ the use of Physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar	2	
	award for 1 the use of Physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor	1	max 2
	the use of Physics terms is inaccurate, and the answer is disjointed with significant errors in spelling, punctuation and grammar	0	
(b) (i)	use of $c = f\lambda$	C1	
	$\Delta f = 3 \times 10^8 / (561 \times 10^{-9}) - 3 \times 10^8 / (540 \times 10^{-9})$	M1	2
	$= (5.348 - 5.556) \times 10^{14} [= 2.08 \times 10^{13} \text{Hz}]$	A1	5
	[explicit subtraction or to 3+ s.f. required for A mark]		

(ii)	$\Delta f/f = v/c$	C1	
	$V = c *\Delta f / f [or \Delta \lambda / \lambda] = 3 \times 10^8 \times 2.08 \times 10^{13} / 5.556 \times 10^{14}$	M1	3
	[e.c.f. from (b)(i)]		
	$= 1.12 \times 10^7 \mathrm{m/s}$	A1	
(iii)	[d = v/H]		
	conversion to km/s		2
	$d = 11.2 \times 10^{3}/65 = [172 \text{ Mpc}] \text{ [e.c.f. from (b)(ii)]}$		3
	$= 172 \times 10^{6} \times 3 \times 10^{16} = 5.17 \times 10^{24} \mathrm{m}$		
		Total	16

Ques	stion 22			
(a)	(i)	Doppler effect/shift	B1	1
	(ii)	the Universe is expanding (not the Universe is moving outwards/away) or the universe is the result of a 'big bang'	B1	1
(b)		change in wavelength = 60 nm and use of $\Delta\lambda/\lambda = v/c$ (condone either λ for this mark)	C1	
		3.0 to $3.1 \times 10^7 \mathrm{ms^{-1}}$	A1	
		or calculates one frequency correctly using $c = f\lambda$ (5.08 × 10 ¹⁴ Hz or 4.62 × 10 ¹⁴ Hz)	C1	2
		arrives at 2.7 to $2.8 \times 10^7 \text{ m s}^{-1}$ (using approximation $\Delta f/f = v/c$) or 3.0 to $3.1 \times 10^7 \text{ m s}^{-1}$ (using $\Delta f/f = v/c$)	A1	
(c)	(i)	$d\sin\theta = n\lambda$	C1	
		correct substitution for $d (2.22 \times 10^{-6} \text{ m or } 1/(4.5 \times 10^5)$ seen and $n\lambda (2 \times 590 \times 10^{-9})$ (condone incorrect power of 10 for λ)	C1	3
		$32(.1)^{\circ}$ (or $32(.4)$ if <i>d</i> is rounded to 2.2×10^{-6} m)	A1	

	B1	useful diagram showing more than two slits with path differences shown (not just waves spreading out from slits)	(ii)
		max 4 for answer that refers only to two slits throughout	
	B1	mention of interference or superposition	
	B1	light from slits is coherent (condone sources are coherent)	
	B1	path difference (from slits) is a multiple of one wavelength	
max 5	B1	waves arrive in phase (condone light arrives in phase)	
	B1	interference is constructive	
	B1	waves add to produce larger amplitude/intensity/bright light (may be awarded for a good diagram that shows this)	
	B1	explanation of different spectral lines for the same wavelength	
	B1	lines are bright because waves from many slits are interfering (owtte)	
	2	at least 3 marks for Physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar	
max 2	1	at least 1 mark for Physics + some incorrect work the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor	
	0	the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar	
14	Total		

Ques	tion 23			
(a)	(i)	continuous range of frequencies not discrete frequency	B1	1
	(ii)	glowing/incandescent/white hot body /example of same	B1	1
(b)		absorption owtte	B1	
		absence of light at dark line	B1	3
		correct reason	B1	
			Total	5

Question 24			
(a)	correct use of parsec conversion	C1	
	correct use of $v = Hd$	C1	3
	$= 9.43 \times 10^{6}$	A1	
(b) (i)	use of $\Delta\lambda/\lambda = v/c$	C1	
	$\Delta \lambda = 5.8 \times 10^{-7} \times 9.43 \times 10^{6}/3 \times 10^{8}$	C1	3
	$= 18.2 \times 10^{-9} \mathrm{m}$	A1	
(ii)	adds wavelengths	C1	2
	correctly; candidates' answer to (b) + 580.0 [e.c.f.]	A1	Z
		Total	8

Question 25			
	infrared	B1	
	a value in the range $(4 7) \times 10^{-7}$ (1 or 2 s.f. only)	B1	3
	gamma rays and the nucleus accept nuclear/nuclide etc	B1	
		Total	3

Question 26			
(a)	H = v/d	C1	
	best fit line drawn	M1	3
	gradient of line shown to be 65 ± 4	A1	
(b)	use of $d = v/H$	B1	2
	answer 260 (accept 262 or accurate graph read-off) (Mpc)	B1	2
(c)	(a distance) $\times 10^6 \times 3.3$	C1	
	(a distance) $\times 9.5 \times 10^{15}$	C1	3
	answer = 1.5×10^{10} (years)	A1	

(d)	mention or description of Doppler effect	B1	
	mention of <i>red shift</i>	B 1	
	measurement of wavelength or frequency	B 1	
	giving longer wavelength/lower frequencies than on Earth	B 1	max 4
	<i>description</i> of use of the shift formula $(\Delta f/f = v/c)$	B 1	
	mention of the v< <c condition<="" td=""><td>B1</td><td></td></c>	B 1	
	any 4 points from 6		
	accurate use of Physics terminology + fluent, well argued explanation + good spelling and grammar + at least 2 marks for the Physics	2	
	accurate use of terminology + comprehensible explanation + at least 1 mark for Physics	1	max 2
	no marks for the Physics <i>and/or</i> disjointed answer with poor spelling and grammar	0	
		Total	14

Que	stion 27			
(a)	(i)	3 quarks	C1	2
		1 up and 1 down	A1	2
	(ii)	sum of the change is zero	B1	1
(b)	(i)	proton	B1	2
		anti neutrino	B1	Z
	(ii)	one of the down quarks becomes an up quark	B1	2
		the sum of the charges becomes $+e$	B1	2
			Total	7

Question 28			
	D		1
		Total	1

Question 29			
(a)	d + d + u	B1	1
(b) (i)	conservation of charge: $-1/3 = +2/3 + (-1) + 0$	B1	
	conservation of baryon number: $1/3 = 1/3 + 0 + 0$	B1	3
	conservation of lepton number: $0 = 0 + (+1) + (-1)$	B1	
(ii)	anti up-quark plus positron plus electron neutrino	B1	1
		Total	5

Ques	stion 30			
(a)		lepton fundamental meson, baryon not fundamental allow underline or crossing out wrong options	B1	1
(b)	(i)	baryon/hadron	B1	1
	(ii)	uud	B1	_
		$+\frac{2}{3}+\frac{2}{3}-\frac{1}{3}=+1(e)$	B1	2
			Total	4

Question 31			
	2 quarks	M1	
	down and anti-up	A1	3
	-1/3 + (-2/3) = -1	A1	
		Total	3

Question 32			
(a)	$\pi^- + p^{(+)} = n + \pi^+ + K^-$	B1	1
(b)	charge conservation equation correct	M1	
	baryon conservation equation correct	M1	4
	lepton conservation equation correct	M1	4
	all comments and checks consistent	A1	
		Total	5

Question 33			
(a)	A - repelled	B1	
	B bends away from nucleus	M1	3
	B & C would cross beyond nucleus	A1	
(b)	one piece of information	B1	
	second piece	B1	_
	[e.g. substructure of atom/size of nucleus/charge on nucleus /density of nuclear material, atoms mostly empty space/massive nucleus evidence for nucleus/alpha particle]		2
		Total	5

Question 34			
(a)	all correct (-1 for each misclassification or omission; total not to go below zero)	B4	4
	hadrons: proton/neutron/pion		
	leptons: electron/muon/neutrino		
(b)	proton	B1	
	neutron	B1	2
	(-1 for each misclassification; total not to go below zero)		
		Total	6

Ques	stion 35			
(a)	(i)	meson (not muon)	B1	1
	(ii)	$-1 \text{ or } -1.6 \times 10^{-19} \text{ C or } -e$	B1	1
	(iii)	0	B1	1
(b)		baryon number $0 \rightarrow 0 + 0$ (satisfied or ^c s) (allow statement that as these are all leptons baryon number is not relevant <i>owtte</i>)	B1	3
		lepton number $-1 \rightarrow -1 + 1 \times \text{ or not satisfied}$	B1	
		charge $(+)1 \rightarrow (+)1 + 0$ (satisfied or ^c s)	B1	
			Total	6

Question	n 36			
(a) (i	i)	continuously (continually) varying (changing) quantity/voltage/amplitude	B1	
		mention of frequency	M1	3
		range of frequencies or highest f - lowest f	A1	
(i	ii)	human hearing 20 Hz – 15-20 kHz (or range 15-20 kHz)	B1	
		telephone bandwidth much smaller	B1	3
		full bandwidth not needed for acceptable communication	B1	
(b) (i	i)	f = 1/T	C1	2
		1250 Hz	A1	2
(i	ii)	$2 \times (b)(i)$ answer (e.c.f.)	D1	1
		allow 2500 Hz but otherwise s.f.p.	DI	I
(i	iii)	capacity of transmission medium usually much greater than that needed for single signal/ spare capacity	B1	
		digital or sampled signals used	B1	
		each signal broken into a fixed chunks (of data)	B1	max 4
		sent sequentially	B1	
		each signal recompiled	B1	
		need for synchronisation	B1	
		the use of Physics terms is accurate, the answer is fluent/ well argued with few errors in spelling, punctuation and grammar the candidate must have scored at least 3 marks for Physics to access this	2	
		the use of Physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor the candidate must have scored at least 2 marks for the Physics to access this	1	max 2
		the use of Physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar	0	
			Total	6