AQA

A-LEVEL

PHYSICS B: PHYSICS IN CONTEXT

PHYB5 - Energy Under the Microscope
Mark scheme

2455
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

COMPONENT NAME: Unit 5 - Energy Under the Microscope

COMPONENT NUMBER: PHYB5

Question	Part	Sub Part	Marking Guidance	Mark type	Mark	Comments

1	(a)	(i)	Exhaust - waste gases are released into the surroundings (as the piston moves upwards)	M1	2	OWTTE
			Induction -air/fuel is sucked/introduced/drawn into the cylinder (as the piston moves down)	A1		

| 1 | (a) | (ii) | When compressing air work is done on the air/ energy transferred to the air/internal
 energy increased/KE of molecules increases
 temperature rise sufficient/enough to ignite the fuel | M1 | A1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1	(b)	$\begin{aligned} & \text { Use of } p V / T=\text { constant } \\ & \text { e.g. } \frac{49 \times 1.5}{1940}=\frac{3.02 \times 10.9}{T} \\ & 869(870) \mathrm{K} \end{aligned}$ OR Calculation of n or the 'constant' Substitution using their n or their constant 869 (870) K	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	or calculates n and then T May use data for AB or C Condone powers of 10 or Use of constant volume change data Gives 867

1	(c)	(i)	Use of $p V=n R T$ Allow $n=p V / R T$ or substitution condoning incorrect powers of 10 $1.01 \times 10^{5} \times 10.9 \times 10^{-4}=n \times 8.3 \times 290 \text { (e.g.) }$ 0.045-0.046 Penalise 1 sf OR Calculate N using $p V=N k T$ $n=N / N_{A}$ Answer as above	C1 C1 A1 C1 C1 A1	3	Using data for A B C or D Including correct powers of 10

1	(c)	(ii)	Calculation of $N \quad 0.046 \times 6.0 \times 10^{23}$	C1	4	
			$1.01 \times 10^{5} \times 10.9 \times 10^{-4}=\frac{1}{3} 2.8 \times 10^{22} \times 4.8 \times 10^{-26}\left\langle c^{2}\right\rangle$	C1		
			$2.45(2.5) \times 10^{5} \quad$ allow 2.6×10^{5} from rounding N to 2 sf	A1		Condone calculation of rms speed of 496 (500)
			$\mathrm{m}^{2} \mathrm{~s}^{-2}$ cao	B1		
			$\begin{aligned} & \text { OR } \\ & 3 / 2 k T=1 / 2 m<c^{2}> \end{aligned}$	C1		
			$3 \times 1.38 \times 10^{-23} \times 290=4.8 \times 10^{-26}\left\langle c^{2}\right\rangle$	C1		
			2.5×10^{5}	A1		
			$\mathrm{m}^{2} \mathrm{~s}^{-2}$ cao	B1		

| 1 | $(\mathrm{~d})$ | | Attempt to use $p V$ (calculates $p V$ for B or C$)$
 Or $\Delta V=1.5-0.68$ or 0.82 seen
 $\left(49 \times 10^{5} \times 0.82 \times 10^{-4}\right)$ | Using graph
 $1.5-0.7$ | condone power of 10 error |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $400(402401.8) \mathrm{J}$ | 390 J | | | | |

1	(e)	ΔU negative Q negative W zero	$B 1$	2	$B 1$	

2	(a)		The marking scheme for this question includes an overall assessment for the quality of written communication (QWC). There are no discrete marks for the assessment of QWC but the candidate's QWC in this answer will be one of the criteria used to assign a level and award the marks for this question. Descriptor - an answer will be expected to meet most of the criteria in the level descriptor. Level 3 - good -claims supported by an appropriate range of evidence -good use of information or ideas about physics, going beyond those given in the question -argument well-structured with minimal repetition or irrelevant points -accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling Level 2 - modest -claims partly supported by evidence, -good use of information or ideas about physics given in the question but limited beyond this the argument shows some attempt at structure -the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling Level 1 - limited -valid points but not clearly linked to an argument structure -limited use of information about physics -unstructured -errors in spelling, punctuation and grammar or lack of fluency	$\begin{aligned} & \mathrm{B} 1 \\ & \text { x6 } \end{aligned}$	6	

			Level 0 -incorrect, inappropriate or no response			
			Answer could include: Suitable diagram showing structure suitably labelled Ions enter the selector at different speeds Use of crossed electric and magnetic fields. Selector designed so that forces produced by the fields are opposite Magnetic force on an ion is Bqv Magnetic force perpendicular to both B and v Electric field produced by potential difference between two plates $E=V / d$ Electric force on an ion is Eq Force in direction of E for positive ions For one velocity forces cancel so no deflection (and pass through collimator/exit hole) $F=B q v=E q$ This happens when $v=E / B$ Velocity selected is Independent of charge on the ion Level 3 This will be a coherent response which will include all the important points. Equations will be explained. Force directions will be explained and terms in the equations defined. They will be clear that initially there are a variety of speeds and the and the condition for the selected velocity stated. They may go on to explain what happens to the unselected ions. There may be a good helpful diagram. Level 2 This may lack coherence and/or a largely qualitative response with some attempt to use equations. The condition for the velocity selected should be stated. Terms may not be adequately defined and some aspects are only inferred rather than stated. The diagram may be incomplete and lack labelling. Level 1 This may be a response that will be superficial answer to the question and be largely descriptive with little attempt to provide explanations. Communication may be of a poor standard. Level 0 This will contain no relevant physics	(Ignore reference to other parts of the system

2	(b)	(i)	Arrow toward centre of circle	B1	1	
2	(b)	(ii)	Ions would lose energy in collisions/slow down/reduce velocity Path would not be circular Collisions may cause/dispersion/scattering/deflection/change in direction of ions ANY 2	B1 B1	2	Not just 'collide with...'or ionisation

| 2 | (b) | (iii) | $40 / 50$ or 0.8 seen (allow 40/)(50 $\pm 2)$
 80% cao | C1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A1 | | | | | |

2	(b)	(iv)	$B q v=\frac{m v^{2}}{r}$ leading to $m=\frac{B q r}{v}$ substitution before or after changing subject $\begin{aligned} & m=\frac{B \times 3.2 \times 10^{-19} \times 0.055}{15000} \\ & m=1.17 \times 10^{-24} B \end{aligned}$	B1 B1 B1	3	not $1.6 \times 10^{-19} \times 0.11$ 3 sf required

2	(b)	(v)	$B=0.0348 \pm 0.0001$ or 0.348 ± 0.001 $(4.16$ to 4,18$) \times 10^{-26} \mathrm{~kg}$ (if 1.2 used) 4.07 (if 1.17 used)	M1	A1	Aalue depends on rounding
off						

2	(b)		(vi)	Charge on ion $=+2$ so atom has lost 2 electrons Electrons $=10$ Number of nucleons $=\left(4.01 \times 10^{-26}\right) /\left(1.67 \times 10^{-27}\right)=24$ Neutrons $=12$	B1	Or calculates mass of protons, subtracts from given mass and divides by mass of neutron.or similar approach.

| 3 | (a) | (i)Use of $\mathrm{Q}=\mathrm{CV}$
 0.18 C | C1 | Allow substitution ignoring
 μ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3	(a)	(ii)	Use of $V=V_{0} e^{-t / R C}$ substitution with incorrect power of 10 for C and t e.g. $650=1800 \mathrm{e}^{-0.0075 /(0.0001 R)}$ 74 to 77Ω OR time to halve $=5.2 \pm 0.1 \mathrm{~m} \mathrm{~s}$ sub in $T_{1 / 2}=0.69 \times 100 \times 10^{-6} R$	B1 B1 B1 B1 B1 B1	3	$\begin{aligned} & \text { or } \quad \ln (650 / 1800)= \\ & -0.0075 /(0.0001 R) \end{aligned}$ condone incorrect power of 10 but $T_{1 / 2}$ must be in range 5.0 to 5.5 ms

3	(b)	(i)	Energy $=1 / 2 C V^{2}$ used or $1 / 2 Q V$ with $Q=0.18$ and $V=1800$ Or one energy correct (162 and approx. 20 to 25) $1 / 2\left(100 \times 10^{-6}\right)\left(1800^{2}-680^{2}\right)$ Approx. 137 to 142(J) depending on read off for final V OR Mean current $=(0.18-0.07) / 7.5 \times 10^{-3}=14.7 \mathrm{~A}$ Mean $V=1250 \pm 50 \mathrm{~V}$ $E=(\text { mean } \mathrm{V}) \times 14,7 \times 7,5 \times 10^{-3}=137(\mathrm{~J})$	B1 B1 B1	3	(allow 660 to 700V)

3	(b)	(ii)	150 -(their (b)(i) if 8 J to 13 J 10 J using given 140 J	B1	1	

3	(b)	(iii)	$4.8 \pm 0.1 \times 10^{-3}$ (s) substitution in Energy $=I^{2} R t \quad$ their (b)(ii) $=I^{2} \times 75 \times 4.8\left(\times 10^{-3}\right)$ 4.6 (A) to 6.1 (A) ecf Using data supplied $E=10$ so $I=5.3$ (A) Allow 1 sf OR 4.8×10^{-3} (s) calculates change in charge $60 \mathrm{mC}-32 \mathrm{mC}=28 \mathrm{mC}$ (allow 28 to 30 mC) current $=5.7$ to 6.4 A	C1 C1 A1	3	Condone no $\left(10^{-3}\right)$ Allow 2 for Average pd estimate about 450V Current $=450 / 75=6 \mathrm{~A}$

3	(c)		Rate of discharge is quicker/discharge current higher (If discharge times and initial voltage are the same then) capacitors deliver too much/more energy Need a lower initial V for both C_{1} and C_{2} or Need to reduce discharge times for both C_{1} and C_{2}	B1	3
N1	B1 increase C values				

| 4 | (a) | | Alpha /or beta decay leaves nucleus in an excited state
 Energy lost to return nucleus to the ground/unexcited state
 Energy change in nucleus is the energy of the gamma ray photon
 ANY 2 PLUS
 Frequency of the gamma radiation $=E / h /$ is given by $E=h f$ | B1
 mentioned in one of the
 statements |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 4 | (b) | (Used internally) as tracers allowing external monitoring/use in PET scanner
 (Used externally) to irradiate and kill cancer cells/cancer treatment (allow radio
 therapy) | B1 | 2 | Not gamma form $\mathrm{e}^{+} / \mathrm{e}^{-}$
 annihilation |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4	(c)	(i)	Radiation through window $=880 \times 100 / 1.5 \mathrm{~min}^{-1}$ or counts per sec $=880 / 60\left(14.7 \mathrm{~s}^{-1}\right)$ ($58700 \mathrm{~min}^{-1}$ or $978 \mathrm{~s}^{-1}$) Total area of sphere at $0.25 \mathrm{~m}=4 \pi r^{2}\left(0.785 \mathrm{~m}^{2}\right)$ or $4 \pi(0.25)^{2}$ Ratio of areas seen $4 \pi r^{2} /\left(1.4 \times 10^{-4}\right)=(5607)$ (Condone attempt using incorrect sphere area) $5.5(5.48) \times 10^{6}$ becquerel (Bq)	C1 C1 C1 A1 B1	5	$3 . .29 \times 10^{8}$ allow 3 for the calculation(forgets to $\div 60$) Allow differences due to sensible early rounding off Must be capital B if abbreviation used Condone capital if written in full and allow reasonable spelling

4	(c)	(ii)	Attempt to use $I=I_{0} \mathrm{e}^{-\mu x}$ allow gives \ln form $\ln \left(I / I_{0}\right)=-\mu x$ $115=880 \mathrm{e}^{-\mu 3.5}$ or $1.9=14.7 \mathrm{e}^{-\mu 3.5}$ or $115=880 \mathrm{e}^{-\mu 0.0355}$ 0.58 or 58 $\mathrm{~cm}^{-1}$ or m^{-1}	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \text { A1 } \end{aligned}$	4	Allow I and I_{0} wrong way round for 'use of' Allow unit that is consistent with unit for μ in the working

4	(c)	(iii)	Two sensible precautions: Only remove box from storage when needed Handle source with tongs/don't handle with hands Erect lead shielding between source and observation point Keep monitoring position as far from the source as possible Condone not pointing at anyone ANY 2	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	Not use gloves Too weak given that question says 'when setting up... Washing hands/no eating, drinking

5	(a)	(i)	B: 92 and 234	B1	1	Auto marked
5	(a)	(ii)	Low penetration/ more easily absorbed All energy converted to thermal energy in short distance Lower risk to personnel and equipment outside the RTG (OWTTE) Less shielding needed (so less mass in spacecraft)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2 max	Not carry more energy/more easily absorbed

| 5 | (b) | | Decay constant $=0.69 /\left(88 \times 3.15 \times 10^{\prime}\right)=2.49 \times 10^{-10} \mathrm{~s}^{-1}$
 Attempt to use $A=\lambda N \quad\left(9.44 \times 10^{15}\right.$ if correct)
 Power available from source $=A \times 8.8 \times 10^{-13} \mathrm{~W}=8300 \mathrm{~W}$
 Efficiency $=380 / 8300=4.6 \%$ | C1
 C1 | C1 | May use incorrect decay |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| constant | | | | | | |
| Each step may be in | | | | | | |
| numerical equation form | | | | | | |

5	(d)		Temperature increases Energy produced depends on volume and energy lost on surface area Or Energy produced increase by a factor of 8 OR energy lost increases by a factor of 4 Energy lost depends on $4 \pi r^{2} ;$ energy produced depends on $4 / 3 \pi r^{3}$ or Doubling radius increases energy loss by factor of 4 and energy gain by factor of 8	B1	C1

6	(b)	(i)	Momentum $p=m v$	or $v=p / m$		B1	2	
			Substitution and manipulation to give $1 / 2 m v^{2}$	or substitute for v in $1 / 2 m v^{2}$		B1		

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 6 \& (b) \& (ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Momentum of alpha }= \\
\& \sqrt{ }\left(2 \times 6.68 \times 10^{-27} \times 3.56 \times 10^{6} \times\left(1.6 \times 10^{-19}\right)\right)=8.72 \times 10^{-20} \mathrm{~N} \mathrm{~s} \\
\& \sqrt{ }(2 \times 4 \times 3.56=5.4
\end{aligned}
\] \\
Momentum of neutron
\[
\begin{aligned}
\& \sqrt{ }\left(2 \times 1.68 \times 10^{-27} \times 14.03 \times 10^{6} \times\left(1.6 \times 10^{-19}\right)\right)=8.68 \times 10^{-20} \\
\& \sqrt{ }(2 \times 1 \times 14.03=5.3
\end{aligned}
\] \\
Appreciation that the momentum changes of the particles are equal and opposite so still 0 momentum.
\end{tabular} \& B1
B1

B1 \& 3 \& | Condone no conversion to J or eV |
| :--- |
| or using mass of alpha $=$ 4 mass of neutron |
| Must be stated |

\hline
\end{tabular}

6	(c)	(Induced fission requires the) absorption/addition of a neutron by/to a nucleus (Unstable) nucleus splits into two (lighter) nuclei (and further neutrons)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	2	Not atom/isotope

6	(d)	(i)	More plentiful supply of raw materials Dealing with waste products less problematic/less harmful waste/products not radioactive Obtain more energy per unit mass/per kg ANY TWO	B1	B1	Not radioactive waste

| 6 | (d) | (ii) | Problems : Control of plasma
 Extracting the energy produced
 High temperature needed/hard to achieve
 Addition of fuel to sustain reaction
 ANY TWO | B1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

