AQA

A-LEVEL PHYSICS B: PHYSICS IN CONTEXT

PHYB2 - Physics Keeps Us Going
Mark scheme

2455
June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

COMPONENT NAME:

Unit 2 - Physics Keeps Us Going

COMPONENT NUMBER:

PHYB2

Question	Part	Sub Part	Marking Guidance	Mark	Comments

| 1 | a | Use of efficiency formula:
 an output energy \div an input energy seen $\frac{4.7 \times 10^{12}}{6.8 \times 10^{12}}$
 or $\frac{6.8-4.7}{6.8}$ or $\frac{2.1}{6.8}$ or $\frac{5.1}{6.8}$ or $\frac{4.7}{5.1}$ or 0.75 or 0.92 or 75% or 92% | Condone powers 10
 error
 Input must be 6.8 or
 5.1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $0.69(1)$ | penalise 1 sf $/$ penalise unit | | |

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 1 & \text { b } & & \begin{array}{l}\text { Input (often) from electricity produced by non-renewable resources } \\ \text { Or } \\ \frac{\text { Input (often) from electricity produced by named non-renewable resource }}{\text { Or }} \\ \text { Energy to pump water is from non-renewable resource }\end{array} & \begin{array}{l}\text { Must be clear about } \\ \text { Energy candidate is } \\ \text { referring t. }\end{array} \\ \text { Could run out of } \\ \text { input energy } \\ \ldots . . . l i m i t i n g ~ c a s e ~\end{array}\right]$.

| 1 | c | Short start up time can meet surges in demand
 Or
 Produces a lot of energy quickly | 1 | B1 | Condone minutes for
 start up time |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2		All accelerations are same	2	M1 Allow inference of same magnitude. Condone wrong directions or opposite signs for 1 mark		
(Because) only force acting (on the ball) is weight $/$ moving(freely) under						
gravity /						
All have an acceleration of $9.81 \mathrm{~m} \mathrm{~s}^{-2}$,	All have an acc of
:---						
9.81 ms ${ }^{-2}$ scores two						
marks						

| 3 | a | Floating object displaces (an amount of) fluid equal to its own weight
 Or
 For a floating object: upthrust = weight of object | 1 | B1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 3 | b | Decrease (not sinks) owtte
 more fluid to be displaced to produce larger upthrust to float
 or
 weight of the tanker is(now) greater than the (initial) upthrust
 or
 more fluid to be displaced to increase the weight of the displaced water (to equal
 the increased weight of the tanker) | 2 | B1 | B1 |
| :--- | :--- | :--- | :--- | :--- | :--- | | Must refer to force(s) |
| :--- |
| acting |

4	a	$60 / 9.5$ or 6.3 (litres) or $120 / 19$ Converts Wh to J or kWh to J $6.3 \times 10(\mathrm{~kW}) \times 3600$ or $6.3 \times 10 \times 30 \times 60$ (see $\left.1.13 \times 10^{8} 2 \mathrm{marks}\right)$ Or $10 \mathrm{kWh}=3.6 \times 10^{7}(\mathrm{~J})$ 2.27×10^{8} or 2.3×10^{8}	3	C1	C1

4	b	Use of $P=\Delta W / \Delta t$ $2.3 \times 10^{8} \div 1800$ or $63 \div 0.5$ or $63000 \div 0.5$ or their ans (a) $\div 1800$ or their answer to 4(a) \div a recognisable time (30 (min) / 0.5 (h)) 1.26×10^{5} or 1.26×10^{5} or $1.3 \times 10^{5}(\mathrm{~W}) \quad$ ecf	2	C1 A1	Condone power 10 error

| 4 | c | | higher fuel consumption / more work done / More pollution / more CO_{2}
 production/ More SOX (NOX) / more CO_{2} production/ Increased acid rain /
 Increased greenhouse effect | MAX
 2 | More noise pollution
 (1 mark)
 Lower fuel
 economy(without
 explanation)
 (1 mark)
 Less efficient
 (without explanation)
 (1 mark) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| For the same distance of journeys / per km | | | | | |

5	a	identifies area of one square $=2 \underline{m} /$ a recognizable formula / states that area under graph is distance 33 (squares) / area of trapezium or triangle and rectangle with working only/ Attempt to find correct area	2	B1	sectioning off

| 5 | b | Straight line with positive gradient beginning at $(3,0)$
 ends at 14 s
 goes to $(14,12)$ | 3 | M1
 A1
 A1 | between 2.8 and 3.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 6 | a | i | E / radiation | 1 | B1 | General marker |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | a | ii | F / kinetic | 1 | B1 | General marker |

6	a	iii	C rotational kinetic	1	B1	General marker

6	b	i	Burbines are rotated to face into wind / Minimum distance between WTGs is maintained in all directions / Each WTG is the Minimum distance (5d) from any other	1	B1	

6	b	ii	Use of $P=1 / 2 \pi r^{2} \rho v^{3}$ (condone error in sub for r) or finds radius $=82 / 2=41$ Or finds area $=5281\left(\mathrm{~m}^{2}\right)$ Rearranges to make v^{3} subject condone incorrect sub for $r(r=82)$ or makes v subject of correct equation incorrect sub for r or $\sqrt[3]{\frac{1.6 \times 10^{6}}{\frac{1}{2} \pi \times 1.2 \times 41^{2}}}$ seen 8.0 or $7.96\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ cao	3	C1	Condone power of 10 error in sub for P Correct powers of 10 $\frac{1.6 \times 106}{12674.4}(\text { ans } v=5)$

6	c		More power available to a WTG / must increase spacing of WTGs	2	B1	

7	(a)	Rate of heat loss through $1 \mathrm{~m}^{2}$ (of material) for 1 degree celsius temperature difference (across the material) Or States formula with terms defined	1	B1	Or energy transfer for heat Limiting case is $\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ in words including power

| 7 | (b) | (i) | From graph heat transfer is zero at $18^{\circ} \mathrm{C}$
 (Therefore) temperature difference (across wall) is zero /
 (therefore) temperatures are same (inside and out) | 2 | R1
 extrapolation |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

7	(b)	(ii)	(Area of brick $=$) $6.4 \times 2.5-7.5$ or $8.5\left(\mathrm{~m}^{2}\right)$ Or temp diff $=18-6$ or $12(\mathrm{~K})$ Use of U-value formula condone $\theta=6$ or $\mathrm{A}=6.4 \times 2.5$ in substitution 180 / 183.6 / 184 (W)	3	C1 C1 A1	$\begin{aligned} & 91.8 \text { seen }=2 \text { marks } \\ & 345.6 \text { seen }=2 \\ & \text { marks } \end{aligned}$

7	(b)	(iii)	(Finds heat loss through window $=640-184=456$ 5.07 or $5.1\left(\mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}\right)$	allow ecf	2	C1	Or subtracts $b(i)$ from their incorrect read off of 680 or 620 (1 mark) =4.8 error 3.3 ecf, 6.1 ecf

8	(b)	Resistance decreases Increased number of free electrons / more vibration of lattice / more free electrons / increased amplitude of vibration More vibration should increase resistance but more free electrons decreases resistance and this is dominant effect	3	B1	B1

| 9 | (a) | Use of $k e=1 / 2 m v^{2} \quad$ or sets $m g h=1 / 2 m v^{2}$ and makes h subject
 $14.7 / 15(\mathrm{~m})$ | 2 | C1
 A1 | PE equations of
 motion |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

9	(b)	(i)	Calculates the change in velocity $\mathrm{v}=15.7 / 16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$2 \times t)$ seen	C 1	
A 1						

9	(b)	(ii)	Use of pythagoras' theorem: res vel ${ }^{2}=15.7^{2}+17^{2}$ or res vel $=\sqrt{x^{2}+17^{2}}$ ecf 23 or 23.1 or $23.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ ecf	2	C1	

| 9 | (c) | | 28° or 62° seen(inside right angled triangle) | 2 | C1
 Calculated 25 in
 correct position
 on diagram
 Or $25+37$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 10 | (a) | | connects ammeter in series with cell and load resistor (any resistive load)
 Includes rheostat or other practicable means of obtaining range of data and
 voltmeter in parallel | 2 | Benalise extra
 incorrect meters /
 connecting wires/
 resistors |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 10 | (b) | Work done in moving unit charge or energy per coulomb or energy per unit
 charge or states formula and defines terms or joules per coulomb
 (Whole way) round circuit | 2 | B1 | Treat mention of
 force as neutral |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

10	(c)	2.8 (V)		1	B1	
		Read off of $\mathrm{V}=0$ when $\mathrm{I}=2.2 \mathrm{~A}$ Use of $\varepsilon=\mathrm{IR}+\mathrm{Ir}$ 1.27 to $1.29,1.3$ maximum (Ω)	t on line: $(0.6,2),(1.4,1)$ ecf for emf and approx read off penalise minus sign on answer	3	C1 C1	Attempts to find gradient $\text { gradient }=(-) r$ no ecf on answer

10	(d)	(i)	parallel Total emf unchanged / internal resistance of combination decreased / Two resistors in parallel therefore lower (by formula e.g.)	2	M1	A1

10	(d)	(ii)	Last longer More energy stored in combination Or Brighter / more efficient / more current / more power to bulb Combination has smaller internal resistance / less lost volts / larger terminal pd	2	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	One cell "runs down "or is faulty circuit still works (1 mark) 1 mark statement 1 mark explanation

