

A-LEVEL PHYSICS B: PHYSICS IN CONTEXT

PHYB2 – Physics Keeps Us Going Mark scheme

2455 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

COMPONENT NAME:

Unit 2 – Physics Keeps Us Going

COMPONENT NUMBER:

PHYB2

Question	Part	Sub	Marking Guidance	Mark	Comments
		Part			

1	а	Use of efficiency formula: an output energy \div an input energy seen $\frac{4.7 \times 10^{12}}{6.8 \times 10^{12}}$ or $\frac{6.8 - 4.7}{6.8}$ or $\frac{2.1}{6.8}$ or $\frac{5.1}{6.8}$ or $\frac{4.7}{5.1}$ or 0.75 or 0.92 Or 75% or 92%		C1	Condone powers 10 error Input must be 6.8 or 5.1
		0.69(1) penalise 1 sf / penalise unit	2	A1	Allow 69 %

1	b		1	B1	Must be clear about
		Input (often) from electricity produced by non-renewable resources			Energy candidate is
		Or			referring to.
		Input (often) from electricity produced by named non-renewable resource			
		Or			Could run out of
		Energy to pump water is from non-renewable resource			<u>input</u> energy
					limiting case

1	С	Short start up time can meet surges in demand	1	B1	Condone minutes for
		Or Produces a lot of energy <u>quickly</u>			start up time

2		All accelerations are same	2	M1	Allow inference of
					same magnitude.
					Condone wrong
					directions or opposite
					signs for 1 mark
		(Because) only force acting (on the ball) is weight / moving(freely) under		A1	All have an acc of
		gravity /			9.81 ms ⁻² scores two
		All have an acceleration of 9.81 m s ⁻²			marks

3	а	Floating object displaces (an amount of) fluid equal to its own weight	1	B1	
		Or			
		For <u>a floating object</u> : upthrust = weight of <u>object</u>			

3	b	Decrease (not sinks) owtte	2	B1	
		<u>more fluid to be displaced</u> to produce <u>larger upthrust</u> to float or weight of the tanker is(now) greater than the (initial) <u>upthrust</u> or <u>more fluid to be displaced</u> to <u>increase the weight</u> of the displaced water (to equal <u>the increased weight</u> of the tanker)		B1	Must refer to force(s) acting

4	а	60/9.5 or 6.3 (litres) or 120/19	3	C1	
		Converts Wh to J or kWh to J $6.3 \times 10 \text{ (kW)} \times 3600 \text{ or } 6.3 \times 10 \times 30 \times 60 \text{ (see } 1.13 \times 10^8 \text{ 2marks)}$ Or 10 kWh =3.6 × 10 ⁷ (J) 2.27 x 10 ⁸ or 2.3 x 10 ⁸		C1 A1	Condone power 10 error
			-		
4	b	Use of $P = \Delta W / \Delta t$ 2.3 x 10 ⁸ ÷ 1800 or 63 ÷ 0.5 or 63000 ÷ 0.5 or their ans (a) ÷ 1800 or their answer to 4(a) ÷ a recognisable time (30 (min) / 0.5 (h))	2	C1	Condone power 10 error
		1.26×10^5 or 1.26×10^5 or 1.3×10^5 (W) ecf		A1	
·			-		-
4	C	higher fuel consumption / more work done / More pollution / more CO_2 production/ More SOX (NOX) / more CO_2 production/ Increased acid rain / Increased greenhouse effect	MAX 2	M1	More noise pollution (1 mark) Lower fuel economy(without explanation) (1 mark) Less efficient (without explanation) (1 mark)
		For the <u>same distance</u> of journeys / per km		1	

5	а		identifies area of one square = 2 \underline{m} / a recognizable formula / states that area under graph is distance	2	B1	sectioning off
			33 (squares) / area of trapezium or triangle and rectangle with working only/ Attempt to find correct area		B1	ticks
		1	1		I	
5	b		Straight line with positive gradient beginning at (3,0) ends at 14 s	3	M1 A1	between 2.8 and 3.2
			goes to (14,12)		A1	
6	а	i	E / radiation	1	B1	General marker
			·			
6	а	ii	F / kinetic	1	B1	General marker
	•	•	·	•	•	
6	а	iii	C / rotational kinetic	1	B1	General marker

6	b	i		1	B1	
			turbines are rotated to face into wind /			
			Minimum distance between WTGs is maintained in all directions /			
			Each WTG is the Minimum distance (5d) from any other			

6	b	ii	Use of $P=1/2 \pi r^2 \rho v^3$ (condone error in sub for r) or finds radius = 82/2=41 Or finds area = 5281 (m ²)	3	C1	Condone power of 10 error in sub for <i>P</i>
			Rearranges to make v^3 subject condone incorrect sub for r (r = 82) or makes v subject of correct equation incorrect sub for r or $\sqrt[3]{\frac{1.6 \times 10^6}{\frac{1}{2} \pi \times 1.2 \times 41^2}}$ seen 8.0 or 7.96 (m s ⁻¹) cao		C1 A1	Correct powers of 10 $\frac{1.6 \times 10.6}{12674.4}$ (ans v =5)

6	С	More power available to a WTG / must increase spacing of WTGs	2	B1	
		no change (in power available per square metre of land)		B1	

7	(a)	Rate of heat loss through 1 m ² (of material) for 1 degree celsius temperature difference (across the material)	1	B1	Or energy transfer for heat
		Or States formula with terms defined			Limiting case is Wm ⁻² K ⁻¹ in words including power

7	(b)	(i)	From graph heat transfer is zero at 18°C	2	B1	Reference to graph:
						extrapolation
			(Therefore) temperature difference (across wall) is zero /		B1	
			(therefore) temperatures are same (inside and out)			

7	(b)	(ii)	(Area of brick =) $6.4 \times 2.5 - 7.5$ or 8.5 (m^2)	3	C1	
			Or temp diff = 18-6 or 12 (K)			91.8 seen = 2 marks
			Use of <i>U</i> -value formula condone $\theta = 6 \text{ or } A = 6.4 \times 2.5$ in substit	ution	C1	345.6 seen = 2 marks
			180 / 183.6 / 184 (W)		A1	

7	(b)	(iii)	(Finds heat loss through window = 640 – 184= 456	allow ecf	2	C1	Or subtracts b(i) from their incorrect read off of 680 or 620 (1 mark) =4.8 error
			5.07 or 5.1 (W m ⁻² K ⁻¹)	ecf		A1	3.3 ecf, 6.1 ecf

8	(a)	Use of potential divider formula	condone R_1 , R_2 mix up	3	C1	condone powers of 10 error
		Correct sub into formula	condone R_1 , R_2 mix up		C1	correct powers of 10
		2.05 or 2.1 (V)			A1	
		(<i>l</i> =) <i>12</i> / 5550			C1	condone powers of
		(V=I × R =) $\frac{12}{5550}$ × 950 or	$\frac{12}{5550} \times 4600$		C1	correct powers of 10
		2.05 or 2.1 (V)			A1	

8	(b)	Resistance decreases	3	B1	
		Increased number of free electrons / more vibration of lattice / more free electrons / increased amplitude of vibration		B1	
				B1	Allow charge carriers
		More vibration should increase resistance but more free electrons decreases			
		resistance and this is dominant effect			

9	(a)		Use of $ke = \frac{1}{2} m \sqrt{2}$ or sets $mgh = \frac{1}{2} m \sqrt{2}$ and makes h subject 14.7 / 15 (m)	2	C1 A1	PE equations of motion
9	(b)	(i)	Calculates the change in velocity $(a \times t)$ seen	2	C1	

9 (b)	(i)	Calculates the change in velocity $(a \times t)$ seen	2	C1	
		$v = 15.7 / 16 (m s^{-1})$		A1	

9	(b)	(ii)	Use of pythagoras' theorem: res vel ² = $15.7^2 + 17^2$ o r res vel = $\sqrt{x^2 + 17^2}$ ecf	2	C1	
			23 or 23.1 or 23.3 (m s ⁻¹) ecf		A1	36.85, 37 ms ⁻¹ ecf

9	(c)	28° or 62° seen(inside right angled triangle)	2	C1	Calculated 25 in correct position on diagram Or 25 + 37
		13 or 12.7 (m s ⁻¹)		A1	

	(=1)			0	D4	
9	(a)			6	BI	
		Level 5-6	slope: smaller change in vertical component of velocity		B1	Faultless use of
			smaller change in vertical component of momentum		B1	technical terms
					B1	
			Technique: increases time for (same) momentum		B1	Must mention slope
					B1	and technique
			Γ Δmv .			
			$F = \frac{1}{\Delta t}$ is quoted (allow in words) and applied property to			
			either slope or technique			
			Or			
			$F = m a$ and $a = \frac{\Delta v}{\Delta t}$ are quoted and applied properly to			
			either slope or technique			
			or			
			$F = \frac{W}{s}$ is quoted and applied properly to			
			either slope or technique			
						Maximum of 4 for
		lovel 3-4	smaller change in velocity on slope (compared to borizontal)			only slope or
			ameller change in memory on slope (compared to honzontal)			technique
			smaller change in momentum on slope (compared to			Good use of
			horizontal)			
			increases time			technical terms
			reduces speed more gradually			
			work done over bigger distance			
		level 1-2	decreases force (therefore less risk of injury)			Poor use of technical
			hends knees			terms
			bonding knoop aboorbo anorgy			
			benuing knees absolbs energy			

10	(a)	connects ammeter in series with cell and load resistor (any resistive load) Includes rheostat or other practicable means of obtaining range of data and voltmeter in parallel	2	B1 B1	Penalise extra incorrect meters / connecting wires/ resistors
10	(b)	Work done in moving unit charge or energy per coulomb or energy per unit charge or states formula and defines terms or joules per coulomb (Whole way) round circuit	2	B1 B1	Treat mention of force as neutral

10	(c)	2.8 (V)			B1	
		Read off of V= 0 when I = 2.2 A or other point on line: $(0.6,2)$, $(1.4,1)$		3	C1	Attempts to find gradient
		Use of $\varepsilon = IR + Ir$	ecf for emf and approx read off		C1	gradient = (-) r
		1.27 to 1.29 , 1.3 maximum ($\Omega)$	penalise minus sign on answer		A1	no ecf on answer

10	(d)	(i)	parallel	2	M1	
			Total emf unchanged / internal resistance of combination decreased /		A1	
			Two resistors in parallel therefore lower (by formula e.g.)			

10	(d)	(ii)	Last longer	2	B1	One cell
			More energy stored in combination		B1	"runs down "or is faulty circuit still works (1 mark)
			Brighter / more efficient / more current / more power to bulb Combination has smaller <u>internal</u> resistance / less lost volts / larger terminal pd			1 mark statement 1 mark explanation