

General Certificate of Education

Physics 1456

Specification B: Physics in Context

PHYB2 Physics Keeps Us Going

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.

ecf is used to indicate that marks can be awarded if an error has been carried forward (ecf must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (**cao**) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

cnao is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

	Skill Level	Marks
Excellent to good		
(i) the answer pro argument which	ovides a well-structured and logical explanation, procedure or ch	
 answers the q 	uestion in a piece of extend prose	
 has only mino 	r inadequacies of grammar, spelling and punctuation	5 or 6
	ntains in-depth and relevant key physics as identified in the scheme which is	
 correctly explana 	ained or applied in the context of the question, and	
 supported by sequence 	relevant evidence of physics theory and presented in a logical	
Modest to adequat	e	
(i) the answer pro argument but	ovides some structure and some explanation, procedure or	
• is incomplete	or not logically organised	
 has some sign 	nificant errors of grammar, spelling or punctuation	3 or 4
(ii) the answer co	ntains most of the essential and relevant physics but	
 some key poir 	nts are omitted or	
the evidence of	or theoretical basis is incomplete	
Poor to limited		
(i) the answer lad	cks structure and coherence and	
the explanation	ons, procedures or arguments are very limited and	1 or 2
there are man	y significant errors or grammar, spelling and punctuation	
	ontains only limited relevant physics and little evidence of g, explanation of physics principles	
No answer/totally i	rrelevant or incorrect answers	0

GCE Physics, Specification B: Physics in Context, PHYB2, Physics Keeps Us Going

Question 1			
(i)	С	B1	1
(ii)	В	B1	1
		Total	2

Question 2			
	attempt to use Newton's law of cooling (forgetting to subtract 10) or attempt in which 10 is subtracted from a temperature $70/130 = \theta/70 \text{ so } \theta = 37.7 \text{ or } 38^{\circ}\text{C}$ $60/120 = \theta/60 \text{ or arrives at } 30^{\circ}\text{C (must see working)}$	C1	2
	40°C	A 1	
		Total	2

Question 3			
	vertical component of rope = 610 × cos (20) or 573 (N)	C1	
	610 cos 20 seen in an equation	Ci	•
	(vertical component of resultant) = $590 - 573$ or their F_{v}	C1	3
	16.8 or 17 (N) cao	A 1	
		Total	3

Question 4			
	selects power formula and attempts to use if	C4	
	or 12 given as answer	C1	2
	12/	A 1	
		Total	2

Question 5			
(i)	floating body displaces its own mass/weight of liquid (fluid)	B1	1
(ii)	no effect	B1	
	when the iceberg melts the water formed has a volume equal to the volume of the water in the space occupied by the submerged part of the iceberg (owtte)	B1	2
		Total	3

Question 6			
(i)	zero resistance	M1	2
	at or below critical/transition temperature	A 1	2
(ii)	one valid use mentioned or reason why important	B1	
	one valid use with reason why important or two significantly different valid uses	B1	
	two valid uses with reasons	B1	
	eg uses		
	electromagnet/magnets for accelerators/scanners		
	generators/transmission lines/electric cables/power		
	transmission		3
	transformers		
	computers (reason: increased speed and heating problems)		
	amplifiers in radio astronomy (reason: low noise)		
	reasons		
	can produce very high magnetic field strengths		
	can produce low-energy (power) loss conductors		
	less energy/power wasted or lower energy loss		
		Total	5

Question 7			
(i)	correct substitution in formula for power available	B1	
	correct formula and substitution including area and working leading to 416.7 kW or 417 kW	B1	2
(ii)	62.5 or 63 kW	B1	1
		Total	3

Que	stion 8			
(a)	(i)	$65\times9.8\times35$ seen and evaluated to 22295 or 2231 or 22300 J	B1	
	(ii)	correct substitution of 65 kg and either 11000 J or 18 m s ⁻¹ in ke formula seen	B1	
		18.4 (18.397) (m s ⁻¹) to at least 3 sf	B1	
	(iii)	distance = energy loss/force or work done/force or numerical equivalent	C1	8
		64-64.3 using E_p = 20 kJ or 79 – 81 (m) using 22.3 kJ	A 1	
	(iv)	friction	B1	
		air resistance	B1	
		further detail eg friction at ski-ice surface	B1	
		or caused by need to move air when passing through it	Б	
(b)	(i)	time = $\Delta v/a$ or numerical equivalent	C1	
		6.4(3) – 6.6(6.57)(s)	A 1	4
	(ii)	use of appropriate kinematic equation	C1	4
		(57.8 – 60.4) 58 m or 60 (m) to 2 sf	A 1	
			Total	12

Question 9			
(a)	total resistance in circui	it	
	X open, Y closed R (given)		
	X closed, Y open 2/3 R	B1	3
	X open, Y open 2R	B1	
	X closed, Y closed R/2	B1	
(b)	energy dissipation is V^2/R or approach using both $I = V/R$ and $P = VI$	B1	
	highest resistance gives least energy or X open, Y open or their highest tabulated resistance	B1	2
(c)	electrons collide with ions	M1	
	transferring energy to them/giving them or increasing th vibrational/kinetic energy	eir A1	2
(d)	voltage across load lower or load voltage = $\frac{R}{(R+r)}V$	B1	
	or load current reduced or load current = $\frac{V}{R+r}$		
	thermal energy output will decrease (in any stated circu or identifies lowest resistance in table as being most affected	it) M1	3
	since $P = \frac{V^2}{R}$ or since power = $I^2 R$	A1	
(e) (i)	resistance = $\frac{\rho L}{\pi r^2}$ or substitution or $A = 1.16 \times 10^{-7} (\text{m}^2)$	C1	
	1.93 × 10 ⁻⁴ (m) 0.193 mm	A1	
(ii)	two properties from		4
	high resistance/resistivity (low electrical conductivity)	B1	
	high melting point	B1	
	low thermal capacity/specific heat capacity	B1	
		Total	14

Question 10			
(a)	5 wave per minute so T = 12s	C1	2
	$(4.0^2 \times 2.6 \times 12 =) 500 (499) (kW)$	A 1	
(b)	graph with axes labelled with quantities (P and H) showing correct curvature heading toward origin in 1 st square	M1	_
	detail correct: their power at 4 m and (4, 500 or 8, 2000; 2, 125) (ecf for their power)	A 1	2
(c)	generic marking scheme for QWC applies		
	examples of the physics points made in the response		
	renewable because		
	energy from Sun generates winds		
	winds generate waves		
	advantages		max 6
	eg no pollution of water or air/greenhouse gases		
	fuel cost/dependence on fossil fuels		
	less visual pollution compared with		
	disadvantages		
	eg lack of suitable sites/unreliable output; transmission problems/corrosive conditions		
		Total	10

Question 11			
(a) (i)	clear working:		
	attempts to evaluate area under line (12 – 13 squares \times 0.1 N s) or $\frac{1}{2}$ × 106(105) × 24 × 10 ⁻³ seen	B1	
	1.260 - 1.272 (N s) 1.2 - 1.3 for square counting	B1	4
(ii)	area under graph/impulse = Δmv	B1	
	22.3 (22.8) (m s ⁻¹)	B1	
(b)	use of Pythagoras $\sqrt{22.3^2 + 6.1^2}$ or \tan^{-1} (6.1/22.3)	B1	
	or $\sqrt{20^2 + 6.1^2}$ or \tan^{-1} (6.1/20)	ы	3
	$22.8 - 23.8 (\text{m s}^{-1})$ 20.9 or 21 (m s ⁻¹)	B1	
	14.9 – 15.5 (°) (15 – 16 (°)) 17/18 (°)	B1	
		Total	7

Question 12				
(a) ((i)	thickness	B1	
		(thermal) conductivity	B1	
((ii)	$\Delta\theta$ = 2500 ÷ 2.4 ÷ 24 or 43(.4)	C1	5
		equilibrium temperature = 46 (adds 3 to their temperature difference)	A 1	
		°C	B1	
(b)		max two from:		
		draughts from outside/poor door seal/gaps in the walls	B1	
		air beneath base not at same temperature as other external faces	B1	max 2
		air (wind) flow outside shed	B1	
		temperature variations on surfaces inside the shed due to convection currents/siting of the heater	B1	
			Total	7