

General Certificate of Education

Physics 6456
 Specification B

PHB5
 Fields and their Applications

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK
This is a mark which is independent of M and C marks.
e.c.f is used to indicate that marks can be awarded if an error has been carried forward (e.c.f. must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.
c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Only one unit penalty (u.p.) in this paper unless there is a mark allocated specifically for giving a correct unit in the marking. Note that the unit is only penalised in the final answer to the question.

Only one significant figure penalty (s.f.) in this paper.
Allow 2 or 3 s.f. unless otherwise stated. s.f. penalties include recurring figures and fractions for answers.

Marks should be awarded for correct alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

Before accessing marks for the Quality of Written Communication (QWC) a candidate must first score a minimum of one mark for the physics that is being communicated - this will allow access to 1 mark for QWC. If the candidate scores more marks for physics (a minimum of two or three - depending upon the total mark for that part of the question) then this will allow access to 2 marks for QWC.

Good QWC: the answer is fluent/well argued with few errors in spelling, punctuation and grammar

Poor QWC: the answer lacks coherence or spelling, punctuation and grammar are poor
Very Poor QWC: the answer is disjointed, with significant errors in

GCE Physics, Specification B, PHB5, Fields and their Applications

Question 1			
(a)	$v=\frac{2 \pi r}{T}$ or $\left(2 \pi r f\right.$ and $\left.f=\frac{1}{T}\right)$ or $\left(v=r \omega\right.$ and $\left.\omega=\frac{2 \pi}{T}\right)$ correct substitution $v=\frac{2 \pi \times 5.9 \times 10^{12}}{248 \times 3.2 \times 10^{7}} v=\frac{2 \pi 5.9 \times 10^{12}}{7.94 \times 10^{9}}$ $4669\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ (given to 3 or more s.f.) or $\begin{aligned} & \frac{G M m}{r^{2}}=\frac{m v^{2}}{r} \text { or }\left(F=\frac{G M m}{r^{2}} \text { and } F=\frac{m v^{2}}{r}\right) \\ & \text { or } v=\sqrt{\frac{G M}{r}} \\ & \text { correct substitution } v=\sqrt{\frac{6.7 \times 10^{-11} \times 2.0 \times 10^{30}}{5.9 \times 10^{12}}} \\ & 4765\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { (given to } 3 \text { or more s.f.) } \end{aligned}$	B1 B1 B1 B1 B1 B1	3
(b)	$\frac{G M m}{r}=\frac{1}{2} m v^{2}$ or $\left(E_{p}=\frac{G M m}{r}\right.$ and $\left.E_{k}=\frac{1}{2} m v^{2}\right)$ or $v^{2}=\frac{2 G M}{r}$ substitution correct $v=\sqrt{\frac{2 \times 6.7 \times 10^{-11} \times 1.3 \times 10^{22}}{1200 \times 10^{3}}}$ condone power of 10 error for radius $1200(1205) \mathrm{m} \mathrm{~s}^{-1} \text { (u.p.) }$	C1 C1 A1	3
(c) (i) (ii)	$p V=n R T$ (or equation with values substituted) $\mathrm{n}=(6.7-6.8) \times 10^{-4}(\mathrm{~mol})$ molecules leave the surface easily or molecules have velocities which are higher than the escape speed or light molecules will escape Pluto exerts a low gravitational force or has a low gravitational field strength or gases/substances may have liquefied/solidified temperature on Pluto is (very) Iow	C1 A1 B1 B1 B1 B!	4
		Total	10

Question 2			
(a) (i) (ii)	$\begin{aligned} & \lambda=0.69 / 5700\left(\times 3.2 \times 10^{7}\right) \\ & 3.8 \times 10^{-12} \text { seen }(\text { maybe seen in } A=\lambda N) \\ & 9.5(9.46) \times 10^{18} \end{aligned}$ Bq moles of carbon $=9.46 \times 10^{18} / 6 \times 10^{23}=1.6 \times 10^{-5} \mathrm{~mol}$ or mass $=$ moles $\times 14 \mathrm{~g}$ clearly stated or $1 \mathrm{~mol}=14 \mathrm{~g}$ or realises that activity from (a)(i) is needed mass of carbon 14 per sec $=0.000221 \mathrm{~g}$ or 0.000222 g $\left(2.21 \times 10^{-4} \mathrm{~g} \text { or } 2.21 \times 10^{-7} \mathrm{~kg}\right)$ allow e.c.f. from (i)	C1 A1 B1 C1 A1	5
(b)	${ }_{6}^{14} \mathrm{C} \Rightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \beta+{ }_{0}^{0-}$ ve (condone no Z/A for anti neutrino) symbols with antineutrino shown Z correct for C, N and β A correct for C, N and β	B1 B1 B1	3
(c) (i) (ii)	$\lambda=0.69 / 5700 \text { or } 1.21 \times 10^{-4}$ e.c.f. for use of same incorrect λ from (a) (i) $\begin{aligned} & 0.52=0.75 \mathrm{e}^{-2 t} \\ & 3000-3100(3025-3058) \text { (years) c.a.o. } \end{aligned}$ the estimated (approximate) age is too high boat is younger than has been estimated estimated age should be lower (than (c) (i)) the effect would lower the estimated/approximate age assumption of original activity (of 0.75 in equation) is too high or fewer atoms have (actually) decayed than has been assumed or activity change is (actually) lower than has been assumed or mathematical alternatives A_{0} (in the estimate in (c)(i)) is too high $\ln \left(A / A_{0}\right)$ is too low (In A_{0} / A is too high) so t is too high or the actual A_{0} was lower than that assumed in (c) (i) $\ln \left(A / A_{0}\right)$ should be higher ($\ln A_{0} / A$ should be lower) so t should be lower	C1 C1 A1 B1 B1 B1 B1	5
		Total	13

Question 3			
(a)	similarity force obeys inverse square law (allow $F \propto \frac{1}{r^{2}}$) or potential/potential energy varies as $1 / r$ difference gravitational force only attractive/never repel or electric field can be attractive or repulsive or gravitational potentials are only negative/never positive or electric potentials can be positive or negative	B1 B1	2
(b) (i) (ii) (iii)	$E_{p}=\frac{Q q}{4 \pi \varepsilon_{0} r}$ or $E_{p}=\frac{k Q q}{r}$ and $k=\frac{1}{4 \pi \varepsilon_{0}}$ correct substitution $E_{p}=\frac{2 \times 79 \times\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \times\left(8.9 \times 10^{-12}\right) \times\left(6.5 \times 10^{-14}\right)}$ $5.567 \times 10^{-13}(\mathrm{~J})$ (3 or more sig figs necessary) KE change $=7.2 \times 10-13-5.6 \times 10-13=1.6 \times 10-13 \mathrm{~J}$ use of $E_{\mathrm{k}}=1 / 2 m v^{2}$ (may use with wrong energy substituted) $v=6.9(6.86) \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ assume ms^{-1} if no unit given same initial path - path deflects through greater angle and greater 'closest distance of approach'	B1 B1 B1 C1 C1 A1 B1	7
(c)	gold nucleus recoils/is repelled/gains energy/gains momentum mass of gold nucleus (very) much greater than mass of alpha particle gold nucleus has much lower speed than the alpha particle or little energy transfer to the gold nucleus	B1 M1 A1	3
		Total	12

Question 4			
(a)	correct substitutions to find initial and final mass or number of fissions possible/number of U atoms in $\begin{aligned} & 500 \mathrm{~g}=\frac{500}{235} 6 \times 10^{23}=1.276 \times 10^{24} \text { or } \frac{500}{390 \times 10^{-27}} \\ & \text { mass change per disintegration }=3.2(3.18) \times 10^{-28} \mathrm{~kg} \\ & \text { total mass change }=406 \times 10^{-6} \mathrm{~kg}(0.406 \mathrm{~g}) \end{aligned}$	C1 C1 A1	3
(b) (i) (ii)	clear attempt to calculate mass of protons and neutrons $\begin{aligned} & \text { mass difference }=3.127 \times 10^{-27} \mathrm{~kg} \\ & \mathrm{E}=\mathrm{mc}^{2} \\ & 2.81 \times 10^{-10}(\mathrm{~J}) \end{aligned}$ divides their answer to (b) (i) by 235 or divides their answer to (b) (i) by $1.6 \times 10^{-13} \mathrm{~J}$ e.c.f. their $(\mathrm{b})(\mathrm{i}) \times 2.7(2.66) \times 10^{10}$ 7.5 (7.47) MeV $=0$ unless working shown	C1 C1 C1 A1 C1 A1	6
(c)	any 3 label E (for energy extraction) mentions coolant liquid (sodium or water) or gas $\left(\mathrm{CO}_{2}\right)$ removes energy/heat from the core coolant/hot gas/liquid then passes through a system/heat exchanger to produce steam steam used to drive turbines/generators power control mentions control/boron rods neutrons have to be absorbed/fewer fission neutrons lower rods reduces power output	B1 B1 B1 B1 M1 M1 A1	max 6
	At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC No marks for physics or Very Poor QWC	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\max 2$
		Total	17

Question $\mathbf{5}$			
(a)	identifies interaction between electric current/moving ions/charge and magnetic field mention of (Flemings) left hand rule or force at right angles to field and current force on ions/water (molecules) to left/backwards equal and opposite force on the boat or motion of boat conserves momentum	B1	B1

Question 6			
(a)	direction of the force on a positively charged particle or direction in which a positive charge accelerates or direction in which a positive charge moves when placed in the field or moves from rest in the field	B1	$\mathbf{1}$
(b)	diagram showing radial field lines (at least four) arrow shown from anode to cathode	B1 B1	$\mathbf{2}$
		Total	$\mathbf{3}$

Question 7			
(a) (i) (ii)	$e V=1 / 2 m v^{2} \text { or } E=e V \text { and } E=1 / 2 m v^{2} v=\sqrt{\frac{2 e V}{m}}$ (correct substitution in a correct equation) e.g. $\begin{aligned} & 1.6 \times 10^{-19} \times 4000=1 / 29.1 \times 10^{-31} v^{2} \\ & 3.8(3.75) \times 10^{7}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ $B e v=m v^{2} / r$ correct substitution with $r=30 \mathrm{~mm}$ condone incorrect power of 10 $7.1-7.6 \mathrm{mT}$ or $\mathrm{mWb} \mathrm{m}^{-2}$ (u.p.) c.a.o.	B1 B1 B1 C1 C1 A1	6
(b)	any 3 electrons need to orbit at a larger radius (from equation $B e v=m v^{2} / r$), $r \propto v$ (or v^{2} / r must be constant) if \boldsymbol{B} (m and e) constant voltage must increase to increase velocity	B1 B1 M1 A1	3
		Total	9

Question 8			
	electrons oscillate around/in the cavity/primary coil or alternating/changing current in the cavity/primary coil an alternating/changing current produces an alternating/changing magnetic flux/field there is a (changing/alternating) magnetic flux/field linking the coupling/secondary coil induced emf/current in (coupling/secondary) coil	B1 B1 B1 B1	4
	At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC No marks for physics or Very Poor QWC	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	max 2
		Total	6

Question 9			
	photon energy $=h f=1.62-1.64 \times 10^{-24} \mathrm{~J}$	$\mathbf{C 1}$	$\mathbf{2}$
	or number of photons $=\frac{1100}{\text { photon energy }}$ or $\frac{1100}{h f}$		
	photon number $=1100 / 1.6 \times 10^{-24}=(6.7-6.9) \times 10^{26}$	$\mathbf{A 1}$	
		Total	$\mathbf{2}$

Question 10		C1	
(a) (i)	wavelength $=c / f ; c=f \lambda$ $0.12(0.122) \mathrm{m}$	B1	3
(ii)	sketch drawn with 6 loops (e.c.f. for their wavelength) condone 'sine wave' rather than loops with zero at X and Y	B1	M0

Question 11			
(a)	door/inside lined with metal door fitted closely (to stop escape of waves)	B1	$\mathbf{2}$
(b)	inside cooked by conduction (of energy from hotter outer parts) with liquids convection currents occur	B1	2
		B1	Total

