

General Certificate of Education

Physics 6456
 Specification B

PHB4 Further Physics

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK
This is a mark which is independent of M and C marks.
e.c.f is used to indicate that marks can be awarded if an error has been carried forward (e.c.f. must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.
c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Only one unit penalty (u.p.) in this paper unless there is a mark allocated specifically for giving a correct unit in the marking. Note that the unit is only penalised in the final answer to the question.

Only one significant figure penalty (s.f.) in this paper.
Allow 2 or 3 s.f. unless otherwise stated. s.f. penalties include recurring figures and fractions for answers.

Marks should be awarded for correct alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

Before accessing marks for the Quality of Written Communication (QWC) a candidate must first score a minimum of one mark for the physics that is being communicated - this will allow access to 1 mark for QWC. If the candidate scores more marks for physics (a minimum of two or three - depending upon the total mark for that part of the question) then this will allow access to 2 marks for QWC.

Good QWC: the answer is fluent/well argued with few errors in spelling, punctuation and grammar
Poor QWC: the answer lacks coherence or spelling, punctuation and grammar are poor

PHB4 Further Physics

Question 1			
(a) (i) (ii) (iii)	acceleration (directly) proportional to displacement (from origin/equilibrium position) always directed to origin/equilibrium position/centre not fixed point not force; allow formula if terms defined clearly $f=2 \pi \sqrt{ } \mathrm{k} / \mathrm{m}$ clearly seen evaluates $1 / 2 \pi$ successfully to $3+$ s.f. (0.159) calculates $f=5.2(8) \mathrm{Hz}$	B1 B1 B1 B1 B1	5
(b) (i) (ii)	$(2 \pi \times 5.3)^{2}$ seen $A=(2 \pi \times \text { their frequency })^{2}$ condone power of ten $=13.1 \mathrm{~m} \mathrm{~s}^{-2}$ acceleration is greater than g object loses contact with surface/object in freefall	C1 C1 A1 B1 B1	5
(c)	graph an acceptable shape broad peak with labelled axis explains resonance as matching of frequencies + large amplitude indicates amplitude reduced at high engine speeds (on graph or in words) to minimise effect: (increase) damping to system with specified method/increase mirror mass/decrease k	B1 B1 B1 B1	$\max 4$
	At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC No marks for physics or Very Poor QWC	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\max 2$
		Total	16

Question 2			
(a) (i) (ii)	$\begin{aligned} & R C=2400 \times 6.3 \times 10^{-4} \\ & \text { condone power of ten error in this mark } \\ & 1.51 \mathrm{~s} \\ & 15=120 \mathrm{e}^{-t / R C} \\ & t=3.14 \mathrm{~s} \\ & \text { not }-3.14 \mathrm{~s} \text { or solution that would yield }-\mathrm{ve} \text { answer } \\ & \text { [alternative: 'half life' }=(0.69 R C=) 1.04 \mathrm{~s} \\ & 120 \rightarrow 15 \text { is } 3 \text { half lives so } 3.14 \mathrm{~s} \text {] } \end{aligned}$	B1 B1 C1 A1 C1 A1	4
(b) (i) (ii)	use of $1 / 2 \mathrm{CV}^{2}$ $4.5 \mathrm{~J}(4.54 \mathrm{~J})$ use of power = energy/time (do not credit constant current solutions) 0.11 s (0.113) e.c.f. from (b) (i)	C1 A1 C1 A1	4
(c)	maximum 3 from voltage limits 120 V and 15 V for charge and discharge total time clearly computed ($3.14+0.11$; e.c.f.) correct charging curve relative time ok by eye, condone poor shape	B1 B1 B1 B1	$\max 3$
		Total	11

Question 3			
(a) (i) (ii)	Ft: impulse $\Delta(m v)$: change in momentum	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2
(b) (i) (ii) (iii)	836.4 [kg] uses mass \times speed change $83.6\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}\right.$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1} \mathrm{~N}$ or Ns) same answer as (b) (ii) in correct units opposite direction to motion of bar stated or drawn on diagram	B1 C1 A1 B1 B1	5
(c)	use of $\mathrm{Q}=\mathrm{mc} \Delta \theta(800[836] \times 440 \times 1190)$ do not allow 273 added to temperature change power supplied $=4.2 \times 10^{8} /(3 \times 3600)$ 39 kW (38.8)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3
		Total	10

Question 4			
(a) (i) (ii)	$p V$ evaluated correctly for two readings taken correctly from graph [$p V=170 \mathrm{~J}$; unit not required] $p V$ evaluated correctly for three readings taken correctly from graph [170 J] states same so isothermal/some slight variation so not alternative: calculates constant and hence derives data points then compares to graph; mark as scheme carry out [infinitely] slowly/container good conductor allowing heat to escape/flow in	M1 A1 A1 B1 B1	5
(b)	uses $p / T=$ constant $T=193(\mathrm{~K})$ correct conversion of any temperature	C1 A1 B1	3
(c)	maximum 3 from quotes $\Delta U=Q+W$ and defines $\Delta U Q$ and W ΔU change in heat energy Q at least 'heat' W at least 'work' constant volume so $W=0$ cools so U falls $/ \Delta U$-ve hence Q negative and heat needs to be removed from gas expect equation to be in sentence and grammatically correct, else 1 QWC error; allow ΔQ and ΔW	B1 B1 B1 B1 B1 B1 B1	$\max 3$
	At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC No marks for physics or Very Poor QWC	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\max 2$
(d)	attempts to evaluate area under line area under line $=81.6$ [c.a.o.] J internal energy change $=[420-80] 340 \mathrm{~J}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3
		Total	16

Question 5			
(a) (i) (ii) (iii)	$\begin{aligned} & 2 \pi \times 260 / 60 \\ & =27.2 \mathrm{rad} \mathrm{~s}^{-1} \\ & \text { uses } a=r \omega^{2} \\ & \text { do not allow solutions from shm theory } \\ & 2200 \mathrm{~m} \mathrm{~s}^{-2} \text { [2220] [2700 if } 30 \text { used] } \\ & F=m a ; 310000 \mathrm{~N}[\mathrm{ecf}] / 378000 \mathrm{~N} \end{aligned}$	B1 B1 C1 A1 A1	5
(b) (i) (ii)	$\begin{aligned} & \Delta l=F l / A E=331000 \times 2.8 / 0.21 / 1.6 \times 10^{11} \\ & 2.59 \times 10^{-5} \mathrm{~m} \\ & 1 / 2 F \Delta l=0.5 \times 331000 \times 2.59 \times 10^{-5} \\ & 4.0 \mathrm{~J}[4.04] \quad[1 / 2 \times(\mathrm{a})(\text { (iii }) \times(\mathrm{b})(\mathrm{i})] \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{C} 1 \\ & \text { A1 } \end{aligned}$	4
(c)	without counterbalance there will be an unbalanced torque accept force/moment counterbalance produces opposing torque/net force in shaft vertical avoiding disintegration of machine/excessive wear/vibration	B1 B1 B1	3
		Total	12

Question 6			
(a)	readoff from graph correct $\left[f=4.6 \times 10^{14} \mathrm{~Hz}\right]$ use of $E=h f$ to give $3.0(4) \times 10^{-19} \mathrm{~J}$	B1 B1	2
(b)	line with arrow from $\mathrm{n}=2$ to $\mathrm{n}=3$	B1	1
(c) (i) (ii)	two loop drawn not sine wave (measure of) probability probability of finding electron \propto amplitude 2	B1 C1 A1	3
(d) (i) (ii)	re-arrangement to $\lambda=h / \sqrt{ }(2 \mathrm{mE})$ or equivalent correct substitution $\begin{aligned} & 3.3 \times 10^{-10} \mathrm{~m} \\ & 0.5 \times \text { answer to }(\mathrm{d})(\mathrm{i}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	4
		Total	10

