

General Certificate of Education

Physics 5456

Specification B

PHB1 Foundation Physics

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK This is a mark which is independent of M and C marks.

e.c.f is used to indicate that marks can be awarded if an error has been carried forward (e.c.f. must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only **(c.a.o.)** is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Only **one** unit penalty **(u.p.)** in this paper unless there is a mark allocated specifically for giving a correct unit in the marking. Note that the unit is only penalised in the final answer to the question.

Only **one** significant figure penalty **(s.f.)** in this paper.

Allow 2 or 3 s.f. unless otherwise stated. s.f. penalties include recurring figures and fractions for answers.

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

Before accessing marks for the Quality of Written Communication (QWC) a candidate must first score a minimum of one mark for the physics that is being communicated – this will allow access to 1 mark for QWC. If the candidate scores more marks for physics (a minimum of two or three – depending upon the total mark for that part of the question) then this will allow access to 2 marks for QWC.

Good QWC : the answer is fluent/well argued with few errors in spelling, punctuation and grammar	2	
Poor QWC : the answer lacks coherence or spelling, punctuation and grammar are poor	1	Max 2
Very Poor QWC : the answer is disjointed, with significant errors in spelling, punctuation and grammar	0	

Question 1			
(a)	resistance caused by obstruction of electron movements by atoms/ions (not particles)	B1	2
	ions/atoms vibrate more at higher temperature	B1	
(b)	$R = \rho l / A$	C1	
	$\frac{\text{correct substitution and rearrangement}}{\frac{6.0 \times \pi (2.1 \times 10^{-5})^2}{0.17}}$	A1	3
	$4.9(0) \times 10^{-8} \Omega m$ including unit	A1	
		Total	5

PHB1 Foundation Physics

Question 2			
(a) (i)	kinetic energy or potential energy (of water) to electrical energy	B1	
(ii)	inefficiency of turbine or turbulence or reference to viscous resistance/(work done against) friction in a sensible named place/electrical heating in generator of connecting wires	B1	2
(b)	any two		
	no fuel costs	B1	
	low capital cost	B1	
	renewable	B1	
	no visual pollution/atmospheric pollution/no harmful gases given off	B1	
	any two		
	harsh or corrosive working environment/high maintenance/inaccessible	B1	max 4
	limited availability of sites	B1	
	may affect habitats	B1	
	not 24 hours per day	B1	
	hazard to shipping	B1	
	new technology	B1	
	only small power supply	B1	
		Total	6

Que	stion 3			
(a)		shows reduction in amplitude over time	B1	
		period remains the same over at least 3 cycles	B1	2
(b)	(i)	attenuation clearly greater in (a), condone wrong period, crosses axis at least once	B1	
	(ii)	energy extracted from system	B1	3
		because of resistance forces/friction operating	B1	
			Total	5

Question 4			
(i)	negative electrons in R	B1	
	in S negative ion	B1	3
	in S positive ion	B1	
(ii)	all negative charges shown move to the left	B1	0
	all positive charges shown move to the right	B1	2
		Total	5

Question 5				
(a)	(i)	a conductor, the resistor of which is zero B1		
		at a transition/critical temperature	B1	3
	(ii)	resistance falling with temperature in a straight line with a sudden drop to zero	B1	
(b)	(i)	any appropriate use	B1	
	(ii)	eliminates or reduces energy losses or availability of strong fields	B1	2
			Total	5

Question 6			
(a)	any closed triangle or parallelogram featuring forces from diagram – not necessarily to scale	B1	
	scale drawing of correct shape and labelled	B1	4
	2400 (N) to 2700 (N) found by scale drawing only	B1	
	2500 (N) to 2600 (N) by scale drawing or calculation	B1	
(b)	the boat will rotate in the correct direction/front of boat moves left	M1	
	there is a (net) anticlockwise moment owtte	A1	4
	the boat will move forward/along the wall	M1	
	there is a (net) force in a forward direction	A1	
		Total	8

Question 7			
(a)	basic method is correct and doable	B1	
	method of calculating answer described	B1	
	accurate method described with procedural details correct	B1	4
	means of measuring s and T stated	B1	
	At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC	2 1 0	
	1 mark for physics + sufficient attempt + Good or Poor QWC	1	max 2
	1 mark for physics + insufficient attempt or Very Poor QWC	0	
	No marks for physics or Very Poor QWC	0	
(b) (i)	$s = \frac{\gamma_2}{gt^2}$	C1	
	4.2 (s)	A1	
(ii)	horizontal & vertical components independent/vertical acceleration still \boldsymbol{g}	B1	4
	time not affected	B1	
		Total	10

Ques	stion 8			
(a)	(i)	P = VI	C1	
		42 (W)	A1	
	(ii)	7.0 Ω unit required - allow 1 s.f. answer	B1	
	(iii)	$1/R_{\rm T} = 1/R_1 + 1/R_2$	C1	6
		2.3 (Ω) e.c.f. – 1/3 of their (a) (ii)	A1	
	(iv)	one breaks, others remain/brighter/independently switchable	B1	
(b)	(i)	total resistance = 4.8 (3) Ω or suitable internal resistance equation	C1	
		internal resistance = 0.33Ω	A1	3
	(ii)	their $0.33 \times 2.9/0.95$ (V)	B1	
			Total	9

Question 9				
(a)	(i)	$F = k\Delta l$	B1	
		4.83 seen	B1	
	(ii)	stored energy = $\frac{1}{2} F\Delta l$	C1	4
		0.50 (J) or 0.51 (J) or 0.507 (J)	A1	
(b)	(i)	upward arrow and downward arrow shown touching the mass	M1	
		magnitude correct: their (a) (i) up and 3.7 N down	A1	
	(ii)	1.1(3)N (upwards) e.c.f.	B1	
	(iii)	a = F/m	C1	7
		2.97 (m s ⁻²)/ e.c.f.	A1	
		force in spring will get smaller (so resultant force is smaller)	B1	
		acceleration will reduce	B1	
			Total	11

Ques	tion 10					
(a)		chooses 600Ω			C1	
		use of ratios or po	tential divider fo	rmula	A1	3
		either maximum c or minimum calcu	alculated (5.4 (V lated (3.0 (V))))	A1	
(b)	(i)	T = 0;	V = 3.6 V;	code = 0010		
		T = 6;	$V = 5.1 \mathrm{V};$	code = 1000		
		T = 12;	V = 4.7 V;	code = 0110		
		all V correct			C1	
		1 code correct			C1	
		all codes correct			A1	6
	(ii)	signal not perfect variations in V ma change between s noise/interference	B1			
		increase sampling	B1			
		increase number	of voltage divisio	ons within the range	B1	
		At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC No marks for physics or Very Poor QWC			2 1 0 1 0 0	max 2
					Total	11