

General Certificate of Education

Physics 6456

Specification B

PHB6 Practical Examination

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK This is a mark which is independent of M and C marks.

e.c.f is used to indicate that marks can be awarded if an error has been carried forward (e.c.f. must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only **(c.a.o.)** is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Only **one** unit penalty **(u.p.)** in this paper unless there is a mark allocated specifically for giving a correct unit in the marking. Note that the unit is only penalised in the final answer to the question.

Only **one** significant figure penalty **(s.f.)** in this paper.

Allow 2 or 3 s.f unless otherwise stated. s.f penalties include recurring figures and fractions for answers.

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

Quality of Written Communication

Before accessing marks for the Quality of Written Communication (QWC) a candidate must first score a minimum of one mark for the physics that is being communicated – this will allow access to 1 mark for QWC. If the candidate scores more marks for physics (a minimum of two or three – depending upon the total mark for that part of the question) then this will allow access to 2 marks for QWC.

Good QWC : the answer is fluent/well argued with few errors in spelling, punctuation and grammar	2	
Poor QWC : the answer lacks coherence or spelling, punctuation and grammar are poor	1	Max 2
Very Poor QWC : the answer is disjointed, with significant errors in spelling, punctuation and grammar	0	

PHB6 Practical Examination

Exercise 1

Que	stion 1			
(a)		sensible reading $n \ge 10$	C1	2
		repeated + averaged, <i>T</i> evaluated, accept 3 s.f. only	A1	2
(b)	(i)	correct sub	C1	
		1.42 s	A1	
	(ii)	states measured period is greater/same (must be reasonable)	B1	5
		mentions non-rigidity of hacksaw blade (<i>not</i> non-rigid support)	M1	
		hacksaw increases (effective) height of suspension point/(effective) length of pendulum	A1	
(C)	(i)	A is the amplitude of the swing	C1	
		amplitude is max displacement from equilibrium position	A1	
	(ii)	angular speed/velocity/frequency	B1	-
		rad(ians)/s or $2\pi/T$ and s ⁻¹ /Hz/specifies T or $2\pi f$ where f = frequency + units	B1	
(d)	(i)	n> 20 for all readings	B1	
		minimum of 6 values recorded, suitable range, evenly spread	В3	
		-1 for each missing		
		$I \operatorname{range} \ge 40 \operatorname{cm}$	B1	
		minimum of 2 repeats per length (3 readings in all)	B3	
		-1 for each missing or identical	20	13
		all / to nearest mm	B1	10
	(ii)	table includes <i>n</i> explicit, all <i>t</i> , all <i>T</i> , all T^2 , all <i>l</i> present	B1	
		mark lost for missing unit anywhere	51	
		consistent decimal places in each column	B1	
		overall presentation	B1	
		calculation of all T^2 correct; check 1 and indicate which	B1	

(e)	correct as instructed, units correct (allow ecf from table)	B1	
	non-awkward scales, plots occupy greater than half	M1	5
	minimum of 5 plots, check two points for accuracy	A1	
	best straight line	B1	
	overall quality, axes must be drawn	B1	
(f)	gradient = $4\pi^2/g$ explicit or obvious	B1	
	large triangle used > 1/2 drawn line	B1	
	readoffs or triangle sides correct, check needed	M1	5
	correct calculation of gradient	C1	-
	correct evaluation of g to 2/3 s.f. + unit allow range $9.3 \rightarrow 10.3$	A1	
(g) (i)	correct readoff/calculation for intercept	N/ 1	
	false origin must have correct working for mark		
	correct calculation of <i>k</i>	A1	
	2/3 s.f.	B1	E
(ii)	metre or m	B1	5
(iii)	effective length of pendulum when length of string is 0		
	or extra length of pendulum for all measurements	B1	
	or effective length increase due to non-rigid blade		
		Total	39

Exercise 2

Questic	on 1			
(a)		table extends to 2 minutes, no out of trend readings	B1	1
(b) (i)	fractional decrease in temperature in equal time intervals is the same (2 routes possible) or time for temperature to halve is consistently the same or graph of In (temp) vs time is linear (condone Ig)	C1	
(ii)	carries out specified analysis correctly must see exact half values not approx on route 2 must see plotted graph on printed grid on route 3 on more than two ratios/graph reasonable and complete	C1 A1	4
(iii)	agree with candidate conclusion [exponential usually]	A1	

(C)		temperature change seen	C1		
		energy lost water correct, can be equation	M1	3	
		mass of ice melted by this energy, 2/3 s.f. $[=m_{water} \times c \times \Delta T/L]$	A1		
(d)	(i)	±0.5	MO		
	(ii)	$2 \times$ their di °C/deg/K must have units	A1		
	(iii)	percentage uncertainty for ΔT correct	C1	4	
		sum of % uncertainties seen	A1		
(e)		candidate must answer the question which is about mass melted, not exponential experiment up to 6 max apparatus/analysis improvements			
		1A insulate beaker	B1		
		1B to reduce heat gain to beaker from air etc	B1		
		2 ind on boiling tube	B1		
		 4 change tube/beaker shape to cover more hot water 	B1		
		5 use of temperature sensor and data logger (not 'data logger' bald)	B1		
		6 more precise thermometer or specified precision	B1	max 6	
		7 means to prevent tube 'steaming up'	B1		
		8 allow for shc of glass, thermometer etc not 'more accurate values'	B1		
		9 greater temperature range not ' <i>results</i> '	B1		
		10 significantly more than 40 g water	B1		
		11 any method that allows for mass of ice melted by surroundings	B1		
		12 any other relevant improvement to analysis	B1		
		13 any other relevant improvement to method	B1		
		At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or	2 1 0	may 2	
		Poor QWC 1 mark for physics + insufficient attempt or Very Poor QWC	0		
		No marks for physics or Very Poor QWC	0		
				Total 20	

Ques	stion 2			
(a)	(i)	clear tabulation + units; 6 readings taken	C1	
		readings evenly spread along the wire, <15>85 cm required, rest spread	A1	
	(ii)	axes labelled clearly units not required	C1	5
		straight line	M1	
		through origin	A1	
(b)		correct sub into R = $\rho I/A$	C1	2
		26 × 10 ⁻³ ohm	A1	2
(C)	(i)	gradient greater at right hand end [condone error in end point here]	B1	
		end points coincide both ends	B1	
	(ii)	resistance increases with decreasing area	B1	4
		V/m depends on R/m so gradient greater at right-hand end e.g. V increases at a greater rate	B1	
(d)	(i)	readings taken (about 20/80 cm), must see both units	B1	
	(ii)	1 (off in centre because) cells oppose/cancel out	B1	
		2 current zero in centre/when bulb is off	B1	
		3 idea that at one end p.d. increases		
		and max 2 from:		
		4 same p.d. across bulb/same current at 'just glows'	B1	6
		5 current in opposite directions in two 'just glows' cases	B1	
		6 p.d. across bulb is difference between wire potential and cell potential <i>will be expressed poorly</i>	B1	
		7 between limits current lower than required to light (because p.d. lower) or inverse	B1	
		8 explanation/mention of circuit as potential divider	B1	
		At least 2 marks for physics + Good QWC At least 2 marks for physics + Poor QWC At least 2 marks for physics + Very Poor QWC 1 mark for physics + sufficient attempt + Good or Poor QWC	2 1 0 1	max 2
		1 mark for physics + insufficient attempt or Very Poor QWC	0	
		No marks for physics or Very Poor QWC	0	
				Total 19