PHYSICS (SPECIFICATION B)

PHB6/1

to be conducted between 1 November 2004 and 2 February 2005

In addition to this paper you will require:

- an 8-page answer book;
- A4 graph paper;
- a calculator;
- a ruler.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Write the information required on the front of the answer book. The Examining Body for this unit is AQA. The Paper Reference is PHB6/1.
- Answer all questions. A separate sheet of graph paper is required.
- Formulae Sheets are provided on pages 3 and 4. Detach this perforated page at the start of the examination.
- Show all your working. Do all rough work in the answer book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 39 .
- Mark allocations are shown in brackets.
- You are expected to use a calculator where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

Advice

- Before commencing the first part of any question, read the question through completely.
- Ensure that all measurements taken, including repeated readings, gradients, derived quantities, etc., are recorded to an appropriate number of significant figures with due regard to the accuracy of measurement.
- If an experiment does not operate correctly, you should request assistance from the Supervisor. The Supervisor will give the minimum help necessary to make the experiment operate and will report the action taken to the Examiner. If the fault is due to your inability to make the experiment operate, a deduction of marks will be made, but it will be possible for you to complete the remainder of the question and gain marks for the later parts of that question.

Answer all parts of the question.

1 You are going to investigate the damping of oscillations of a mass-spring system.

Figure 1
(a) Set up the arrangement shown in Figure 1.

Ensure that:

- the ruler is mounted vertically;
- there is no contact between the ruler and the card when the mass oscillates;
- it is possible for the mass to oscillate vertically with an amplitude of 0.150 m without hitting the bench.
(i) Record L_{0}, the scale reading that corresponds to the position of the card when the mass is at rest.
(ii) Measure T, the period of vertical oscillations of the mass-spring system.
(b) Displace the mass through a distance of 0.150 m vertically. Release the mass and observe the oscillations. You do not need to make measurements at this stage.

From your observations, sketch the general shape of the graph you would expect when the amplitude is plotted against time.
(1 mark)

Detach this perforated page at the start of the examination.

Foundation Physics Mechanics Formulae

$$
\text { moment of force }=F d
$$

$$
\begin{aligned}
v & =u+a t \\
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s \\
s & =\frac{1}{2}(u+v) t
\end{aligned}
$$

for a spring, $F=k \Delta l$
energy stored in a spring $=\frac{1}{2} F \Delta l=\frac{1}{2} k(\Delta l)^{2}$

$$
T=\frac{1}{f}
$$

Foundation Physics Electricity Formulae

$$
I=n A v q
$$

$$
\text { terminal p.d. }=E-I r
$$

in series circuit, $R=R_{1}+R_{2}+R_{3}+\ldots .$.
in parallel circuit, $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots .$.
output voltage across $R_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \times$ input voltage

Waves and Nuclear Physics Formulae

$$
\text { fringe spacing }=\frac{\lambda D}{d}
$$

single slit diffraction minimum $\sin \theta=\frac{\lambda}{b}$
diffraction grating $n \lambda=d \sin \theta$
Doppler shift $\frac{\Delta f}{f}=\frac{v}{c}$ for $v \ll c$
Hubble law $\quad v=H d$
radioactive decay $A=\lambda N$
Properties of Quarks

Type of quark	Charge	Baryon number
up u	$+\frac{2}{3} e$	$+\frac{1}{3}$
down d	$-\frac{1}{3} e$	$+\frac{1}{3}$
$\overline{\mathrm{u}}$	$-\frac{2}{3} e$	$-\frac{1}{3}$
$\overline{\mathrm{~d}}$	$+\frac{1}{3} e$	$-\frac{1}{3}$

Lepton Numbers

Particle	Lepton number L		
	L_{e}	L_{μ}	L_{τ}
e^{-}	1		
e^{+}	-1		
v_{e}	1		
\bar{v}_{e}	-1		
μ^{-}		1	
μ^{+}		-1	
v_{μ}		1	
\bar{v}_{μ}		-1	
τ^{-}			1
τ^{+}			-1
v_{τ}			1
\bar{v}_{τ}			-1

Geometrical and Trigonometrical Relationships

$$
\begin{aligned}
\text { circumference of circle } & =2 \pi r & & \sin \theta
\end{aligned}=\frac{a}{c}
$$

Detach this perforated page at the start of the examination.

Circular Motion and Oscillations

$$
\begin{aligned}
& v=r \omega \\
& a=-(2 \pi f)^{2} x \\
& x=A \cos 2 \pi f t
\end{aligned}
$$

$$
\text { maximum } a=(2 \pi f)^{2} A
$$

$$
\operatorname{maximum} v=2 \pi f A
$$

for a mass-spring system, $T=2 \pi \sqrt{\frac{m}{k}}$
for a simple pendulum, $T=2 \pi \sqrt{\frac{l}{g}}$

Fields and their Applications

uniform electric field strength, $E=\frac{V}{d}=\frac{F}{Q}$

$$
\begin{aligned}
\text { for a radial field, } E & =\frac{k Q}{r^{2}} \\
k & =\frac{1}{4 \pi \varepsilon_{0}} \\
g & =\frac{F}{m} \\
g & =\frac{G M}{r^{2}} \\
\text { for point masses, } \Delta E_{\mathrm{p}} & =G M_{1} M_{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
\text { for point charges, } \Delta E_{\mathrm{p}} & =k Q_{1} Q_{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
\text { for a straight wire, } F & =B I l \\
\text { for a moving charge, } F & =B Q v \\
\phi & =B A \\
\text { induced emf } & =\frac{\Delta(N \phi)}{t} \\
E & =m c^{2}
\end{aligned}
$$

Temperature and Molecular Kinetic Theory

$$
\begin{aligned}
T / \mathrm{K} & =\frac{(p V)_{T}}{(p V)_{t r}} \times 273.16 \\
p V & =\frac{1}{3} \mathrm{Nm}\left\langle c^{2}\right\rangle \\
\text { energy of a molecule } & =\frac{3}{2} k T
\end{aligned}
$$

Heating and Working

$$
\begin{aligned}
\Delta U & =Q+W \\
Q & =m c \Delta \theta \\
Q & =m l \\
P & =F v
\end{aligned}
$$

$$
\text { efficiency }=\frac{\text { useful power output }}{\text { power input }}
$$

$$
\text { work done on gas }=p \Delta V
$$

$$
\begin{aligned}
\text { work done on a solid } & =\frac{1}{2} F \Delta l \\
\text { stress } & =\frac{F}{A} \\
\text { strain } & =\frac{\Delta l}{l}
\end{aligned}
$$

$$
\text { Young modulus }=\frac{\text { stress }}{\text { strain }}
$$

Capacitance and Exponential Change

$$
\text { in series, } \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

in parallel, $C=C_{1}+\mathrm{C}_{2}$
energy stored by capacitor $=\frac{1}{2} Q V$
parallel plate capacitance, $C=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} A}{d}$

$$
Q=Q_{0} \mathrm{e}^{-t / R C}
$$

time constant $=R C$
time to halve $=0.69 R C$

$$
\begin{aligned}
N & =N_{0} \mathrm{e}^{-\lambda t} \\
A & =A_{0} \mathrm{e}^{-\lambda t} \\
\text { half-life, } t_{\frac{1}{2}} & =\frac{0.69}{\lambda}
\end{aligned}
$$

Momentum and Quantum Phenomena

$$
\begin{aligned}
F t & =\Delta(m v) \\
E & =h f \\
h f & =\Phi+E_{\mathrm{k}(\max)} \\
h f & =E_{2}-E_{1} \\
\lambda & =\frac{h}{m v}
\end{aligned}
$$

(c) It is thought that the equation representing the variation of amplitude A with time t is

$$
A=A_{0} \mathrm{e}^{-k t}
$$

where A_{0} is the initial amplitude and $\quad k$ is a constant for the system.

Explain how a graph of $\ln A$ (i.e. $\log _{\mathrm{e}} A$) against t enables you to test whether this relationship is correct.
(2 marks)
(d) You are now to make observations that will enable you to plot a graph of $\ln (A / \mathrm{m})$ against t / s. Use the procedure outlined in part (d)(i) below.

You should tabulate all your measurements and any data that you derive from your measurements.
(i) Using a starting amplitude, A_{0}, of 0.150 m , obtain corresponding values for the amplitude, A, and the number, n, of complete oscillations of the mass.
You should consider carefully the appropriate values of n to use.
Use the value of T that you measured in part (a)(ii) to give the values of t that correspond to your values of n.

Calculate the values of $\ln (A / m)$.
(13 marks)
(ii) State one reason for uncertainty in your measurements of A and explain how your procedure minimised this uncertainty.
(2 marks)
(e) (i) Plot the graph of $\ln (A / \mathrm{m})$ against t / s. Draw the best straight line through your plotted points.
(ii) Explain whether your data support the equation given in part (c).
(2 marks)
(iii) Determine a value for k, stating its unit.
(3 marks)
(iv) State the factors upon which the value of k depends and explain how you would expect the value of k to depend on each of the factors you have given.
(4 marks)
(f) Determine the time taken for the amplitude of the oscillations to halve. Show your working clearly.
(3 marks)

END OF QUESTIONS

