GCE 2004 June Series

ASSESSMENT and OUALIFICATIONS ALLIANCE

Mark Scheme

Physics B Unit PHB6

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Dr Michael Cresswell Director General

Marking Scheme

NOTES FOR GUIDANCE

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK
This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to Examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awards meeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. Use the following criteria to award marks:

2 marks: Candidates write legibly with accurate spelling, grammar and punctuation; the answer containing information that bears some relevance to the question and being organised clearly and coherently. The vocabulary should be appropriate to the topic being examined.

1 mark: Candidates write with reasonably accurate spelling, grammar and punctuation; the answer containing some information that bears some relevance to the question and being reasonably well organised. Some of the vocabulary should be appropriate to the topic being examined.

0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked AE thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked CE (consequential error).

4 With regard to incorrect use of significant figures, normally two, three or four significant figures will be acceptable. Exceptions to this rule occur if the data in the question is given to, for example, five significant figures as in values of wavelength or frequency in questions dealing with the Doppler effect, or in atomic data. In these cases up to two further significant figures will be acceptable. The maximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by SF and, in addition, write SF opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

PHB6 Experimental Work

Exercise 1

(a)	(i)	correct magnitude to 2 or 3 sf and unit (about 6 V)	B1	1
	(ii)	p.d. after $10 \mathrm{~s}>0.5$ (i); sf consistent with (i) u.p if not penalised in (i)	B1	
		repeat and average (allow 2 or 3 sf in average)	B1	2
	(iii)	p.d across the capacitor increases or charge on plate repels other electrons	B1	
		p.d. across the resistor decreases	B1	
		current (through the resistor) decreases	B1	3
	(iv)	power $=V^{2} / R$ or $I=V / R$ and $P=V I$	C1	
		(their $E)^{2} / 22000$ correctly calculated to 2 or 3 sf with unit (about 1.6 mW)	A1	2
	(v)	immediately the switch is closed (at $t=0$) OWTTE when the capacitor starts to charge	B1	19
(b)	(i)	5 further possible sets of values of R and V (-1 for each missing or impossible set; -1 for any one out of trend) (possible R values/k Ω : 11; 13.2;16.5; 33; 44; 55; 66; (77; 88; 110)	B2	
		repeats and average for each set (-1 for each missing) allow if repeats taken and they say $\ln (E-\zeta)$ value is the average	B2	
		units for raw data correct ($\mathrm{k} \Omega$ or Ω for R)	B1	
		consistent d.p. for V (must have repeats)	B1	
		values of $\ln (E-V)$ correct to 2 or 3 dp (check one) e.g. $R=22 \mathrm{k} \Omega$ might give $\ln (6.5-3.5)=1.10$	B1	
		values of $1 / R$ in Ω^{-1} correct to 2 or 3 sf only (check one) $1 / R / 10^{-5} \Omega^{-1} 9.1 ; 6.3 ; 4.5 ; 3.0 ; 2.3 ; 1.8 ; 1.5 ; 1.3 ; 1.1 ; 0.91$	B1	
		unit for $1 / R$ correct (allow $\mathrm{k} \Omega^{-1}$)	B1	
		correct unit for $\ln (E-V) ; \ln \{(E-V) / \mathrm{V}\}$ condone $\ln (E-V) / \mathbf{V}$ or $\ln (E-V)$ where $(E-V)$ is in V	B1	
		good tabulation of data (condone split tables if clearly presented) no overwriting, untidy crossing out etc.	B1	11

(ii) graph axes labelled (lose if wrong way round)

B1
units consistent with table (-1 for no unit on $1 / R$ axis) B1
suitable scale (lose for wrong plot e.g. $\log _{10}(E-\mathrm{V})$ or $\ln V$) M1
correct plotting of 6 points (-1 for only 5 points)
A2
best line (must have at least 4 plotted points) B1
good presentation B1
B1 7
B1
M1
A1 3
correct calculation to 2 or 3 sf and negative
(about -20 000)
(iv) gradient $=-10 / C$ or $-t / C$ where $t=10 \mathrm{~s}$

B1
or correct substitution of point that is on the line not allowed
if gradient is positive and the negative sign is lost in later working
or if wrong graph is plotted
unit correct (F or $\mu \mathrm{F}$)
value for C about $500 \mu \mathrm{~F}$ (ignore sfs)
(using candidates gradient; NB no ecf for R left in $\mathrm{k} \Omega$
condone carrying through negative sign if consistent)
(i) time to reach voltage in (a) (about 30 s)
repeat and average
(ii) correct use of ratio or determines constant etc
or substitution in equation (a) (ii) $=$ (a) (i) $\mathrm{e}^{-(\mathrm{c})(\mathrm{i}) / 22000 \mathrm{C}}$
or gradient $=$ their (c) (i) $/ C$
value for total capacitance about 3 x their (b)(iv)
(about $1500 \mu \mathrm{~F}$ allow ecf for R in $\mathrm{k} \Omega$)
(iii) quotes or clearly uses $C=C_{1}+C_{2}$
value for X correct from candidate's data + unit (ignore sfs)
(c) (ii) - (b) (iv)

A1 26
A1 2 C1

Exercise 2

Question 1

Allow B1 if 'increase; increase; increase' without explanation
(d) energy gained from/exchanged with (condone lost to) B1 surroundings/hands/measuring cylinder
use lagging and/or a lid for the sand container B1
or use a vacuum flasktake temperature of the water immediately before adding to theB1sand
not all water leaves measuring cylinder B1
determine masses by weighing/using scales B1
add sand to water rather than water to sand (in any context) B1
temperature differences are small B1
use more sensitive (condone accurate) thermometer B1
(allow use of temperature sensor/probe)mix sand with water that is at a stated temperature $>2 \theta_{\mathrm{S}}$B1or increase the temperature of the sandallow other sensible modificationsmeasure water volume more accurately using pipette/burette/tallB1
narrow measuring cylinder B1
repeat readings and take average
use thermometer with lower thermal capacity
Not use mechanical mixer or mix more thoroughlyuse of computer monitoring over time
Any 6At least 3 marks for Physics + use of Physics is accurate, theanswer is fluent/well argued with few errors in spelling,punctuation and grammar

At least 1 mark for Physics the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar

6
Max 6
22

Question 2

(a)	(i)	separation of pole faces with unit given to nearest mm (35 to 70 mm)	B1	1	1
	(ii)	as separation decreases the displacement of Q increases or displacement of Q varies inversely with separation (condone $1 / r^{2}$)	B1		
		the closer the pole faces are the greater the force experienced by Q (must refer to force not just stronger field strength)	B1	2	2

(b)
(i) Arrow down (along dotted line)
labelled weight or $m g$ or W gravitational force (not gravity)

Arrow on thread toward pivot and labelled tension
-1 for any additional forces
(ii) Any correct moments equation:
weight $\mathrm{x} d=$ horizontal force x vertical distance of force below the pivot
or e.g.
$W d=F \cos \theta(\mathrm{x} 1) ; \theta$ must be labelled correctly on diagram
or
$W \sin \theta(\mathrm{x} 1)=F \cos \theta(\mathrm{x} 1)$
(weight is constant and)
for small displacements vertical distance is constant \approx length of nylon thread
or for small angles $\cos \theta \approx 1$
or for second equation above:
$\sin \theta=d /(1)$ and for small angles $\cos \theta \approx 1$
(c) statement that if $F \propto 1 / r^{2} d \propto 1 / r^{2}$ (i.e. reasoning behind the test)
suitable test calculate $d r^{2} \quad$ (stated or implied)
or
calculates k for one set and uses this to predict d or r for other sets substitute values in $\ln F=\ln k-2 \ln r$

Correct calculations using at least 3 sets of data
e.g. of $d r^{2}$, to at least 2 sf

14625; 14283; 14415; 14400 (-1 for each incorrect)
or
$\ln k$ or k calculated correctly
calculations for all 4 sets of data correct to more than 2 sf
Conclusion that within limits of uncertainty in measurements the data verifies the law
or values are similar or approximately constant
or about the same so relationship is proved
NB must gain at least 1 mark for remote sensing for full Physics marks in (d)
(d) Reason For Remote Sensing
experimenter might affect charge on the spheres
or
experimenter may carry a chargeexperimenter might disturb spheres due to air movementB1
Light Spheres Or Light Suspension Needed
electric force between charged spheres is smalloris smaller than magnetic force between the two magnets
the spheres/suspension have to be light:
so that the spheres will move more easily/move more B1
orotherwise they would not move
Long Thread Suspension Needed
long length of suspension increases the displacement B1
light thread increases displacement or enables the spheres to move B1
more easily
Charge Leakage Problem
use insulator/nylon for suspension B1
use glass rod insulator rather than metal mass B1
large distance between the spheres and the bench B1
Effect Of Ruler B1
discusses effect of using a metal or plastic ruleror why a wooden ruler is preferable
Use Of Camera
stores data for later analysis B1
allows enlargement of image for greater accuracy B1
Not
camera increases accuracy of readingsreduces parallax errorAt least 3 marks for Physics + use of Physics is accurate, theanswer is fluent/well argued with few errors in spelling, punctuationand grammar
At least 1 marks for Physics the use of Physics is accurate, but theanswer lacks coherence or spelling, punctuation and grammar arepoorthe use of Physics is inaccurate, the answer is disjointed, withsignificant errors in spelling, punctuation and grammar

