ASSESSMENT and

Mark scheme January 2004

GCE

Physics B

Unit PHB6

Copyright © 2004 AQA and its licensors. All rights reserved.

Marking Scheme

NOTES FOR GUIDANCE

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to Examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awards meeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. Use the following criteria to award marks:

2 marks: Candidates write legibly with accurate spelling, grammar and punctuation; the answer containing information that bears some relevance to the question and being organised clearly and coherently. The vocabulary should be appropriate to the topic being examined.

1 mark: Candidates write with reasonably accurate spelling, grammar and punctuation; the answer containing some information that bears some relevance to the question and being reasonably well organised. Some of the vocabulary should be appropriate to the topic being examined.

0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked AE thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked CE (consequential error).

4 With regard to incorrect use of significant figures, normally two, three or four significant figures will be acceptable. Exceptions to this rule occur if the data in the question is given to, for example, five significant figures as in values of wavelength or frequency in questions dealing with the Doppler effect, or in atomic data. In these cases up to two further significant figures will be acceptable. The maximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by SF and, in addition, write SF opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

PHB6

Exercise 1

(a) (i) Energy is lost from the system B1
due to air resistance/friction at pivot B1
(ii) larger amplitude implies larger energy loss B1
so constant fraction of energy removed per cycle B1OR good description of consequent exponentialbehaviour4
(b) one determination to nrst mm M1
$2+$ determinations and average A1 2
(c) (i) correct manipulation to yield $x T^{2}=4 \pi^{2} k^{2} / g+4 \pi^{2} x^{2} / \mathrm{g}$ B1
(ii) identifies gradient as $4 \pi^{2} / \mathrm{g}$ B1
so $g=4 \pi^{2} /$ gradient B1
(iii) $\quad k=\sqrt{ }$ (intercept/gradient) B1 4
(d) at least 6 sets of readings tabulated (-1 for each set missed) B2
n quoted for all sets ($n \geq 10$) B1
2 timings per $x+$ correct average [to same sf or one less] B1
x to nrst mm B1
raw t to 0.1 s or 0.01 s B1
$x T^{2}$ and x^{2} correct and to $3+\mathrm{sf}$ B1
x range $10-40 \mathrm{~cm}$ B1
all units correct and tabulation quality (one table, legible, ruled) B1 9
(e) one step B1
explanation B1
second step B1
explanation B1(e.g.step: repeat and average/use fiducial mark/start \& end pointsensible
expl ${ }^{\mathrm{n}}$: uniform fiducial mark where rule movesfastest/minimise uncertainty/allow oscillation to settle/removeunevenesses) etc4
(f) labels and units accurate B1
points and intercept occupy $>1 / 2$ printed grid B1
plotting accurate, $5+$ points for mark B2
best straight line plotted, line thin B1
intercept on graph or $2^{\text {nd }}$ graph plotted to include it. B1
generally neat and presentable work B1
(g) states confirmation B1
states good reason B1 2
(h) $\quad g$: large Δ B1
coord read-off correct B1
answer calculated correctly + units B1
k : intercept read-off correct B1
calculation correct M1
value (0.29 ± 0.03) and unit correct A1 6
(i) Mass of rule distributed along length not at end B1 1

Exercise 2

Question 1

(a) $\quad I$ measured and close to M form value B1
V measured and close to M form value B1 2
(b) (i) Uses energy $=e V \quad$ M1

Carries through calculation correctly with $V \quad$ A1
(ii) Uses $I=Q / t$; and $Q=n e \quad$ M1

Calculate n correctly A1 4
(c) Lost in resistance of LED/electron collisions with atoms in

B1 1 lattice
(d) (i) At least 2 calculations of $V \lambda$ correct M1

4 calculations correct A1
conclusion correct B1
(ii) average of $V \lambda$ calculated B1
one substitution and calculation of $h \quad$ B1 unit for $h(\mathrm{~J}$ s)

B1 5
(e) Use of diffraction grating B1

Details of set-up e.g. set up clear and complete/distances B1
sensible and quoted
Measurements described (i.e. measure theta) B1
$n \lambda=d \sin \theta$ in correct context B1
Repeat for several orders/use highest order visible/measure B1
range of theta and say why
Use of physics terms is accurate, the answer is fluent/well B2
argued with few errors in spelling, punctuation and grammar
And gains at least $\mathbf{3}$ marks for physics
Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor
and gains at least 1 mark for physics
Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar

Question 2

(a) length about 0.45 m

B1
50 Hz
B1
coverts mass to tension correctly (0.98 N usually) B1
calculates $\mu=T / 4 l^{2} f^{2}$ correctly
B1 4
(b)
(i) Absolute uncertainty in $l(\pm 0.5-2 \mathrm{~cm})$

B1
Calcs $\% \Delta T$ and $\% \Delta l$ correctly
B1
(ii) $\% \Delta \mu=\% \Delta T+2 \times \% \Delta l$ seen

M1
Correct calc
A1 4
(c) There is force on a current-carrying wire in magnetic field $\quad B$

Good detail (e.g. description of catapult field or correct B1 statement of force direction related to magnetic field) Idea of current reverses and therefore force reversing B1
$f_{\text {mains }}$ matches $f_{\text {natural }} \quad \mathrm{B} 1$
good detail [e.g. resonance described well, uniqueness of B1 length]

Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar And gains at least 3 marks for physics B1
Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics B0
Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar
(d) Use of a.f.o. or alternative to set/measure frequency B1
Set T within safe limits [quoted range $<20 \mathrm{~N}$ or statement] B1
Keep both L, μ constant both stated explicitly B1
Plot f^{2} against T [or f vs $\sqrt{ } T$ or \ln - \ln graph or calculate $\left.f^{2} / T\right]$ B1
Should be straight line thru origin [ln-ln gradient $2 / 1 / 2$]

$$
\text { Snould be strargnt ine inru origm [m-In graalent } 21 / 2]
$$

